[1] Bai Z D, Rao C R, Zhao L C. Kernel estimators of density function of directional date. J Multivariate Anal, 1988, 27: 24--39
[2] Nolan D, Pollad D. U-process rates of convergence. Ann Statist, 1987, 15: 780--799
[3] Ginè E, Guillou A. On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals. Ann Inst Henri Poincar\'e (B) Probabilitè et Statistiques, 2001, 37: 503--522
\REF{
[4]}
Gin\'{e} E, Guillou A. Rates of strong uniform consistency for
multivariate kernel density estimators. Ann Inst Henri Poincar\'e
(B) Probabilit\'e et Statistiques, 2001, {\bf 38}: 907--921
\REF{
[5]}
Gao F Q. Moderate deviations and large deviations for kernel
density estimators. J Theoret Probab, 2003, {\bf 16}: 401--418
\REF{
[6]}
Montgomery-smith S J. Comparison of sums of independent
identically distributed random vectors. Probab Math Statist, 1993, {\bf 14}: 281--285
\REF{
[7]}
Hall P, Waston G S, Cabrea J. Kernel density estimation with
spherical data. Biometrika, 1987, {\bf 74}: 751--762
\REF{
[8]}
Wang X M, Zhao L C. The law of the itered logarithm for
kernel density estimator of directional data. J Sys Sci (in Chinese), 2001, {\bf 21}(3): 264--273
\REF{
[9]}
Wang X M, Zhao L C. A law of logarithm for kernel density
estimatior with directional data. Acta Math Sina (in Chinese), 2003, {\bf 46}(5): 865--874
\REF{
[10]}
Zhao L C, Wu C Q. Central limit theorem for integrated square
error of kernel estimators of spherical density. Science in China, 2001, {\bf 44}(4): 474--483 |