[1]Furuta T.A>=B>=0 assures(B^r A^p B^r)^{1/q}>=B^{(p+2r)/q} for r>=0,p>=0,q>=1 with(1+2r)q>=p+2r.Proc Amer Math Soc, 1987, 101: 85-88
[2]Fujii M, Furuta T, Kamei E. Complements to the Furuta inequality. Proc Japan Acad, 1994, 70A 239-242
[3]Tanahashi K. The Furuta inequality in case of negative power. Proc Amer Math Soc, 1999, 127 1683-1692
[4]Furuta T, Yamazaki T, Yanagida M. Equivalence relations among Furutatype inequalities with negative powers.Sci Math, 1998, 1 223-229
[5]Furuta T, Yamazaki T, Yanagida M. On a conjecture related Furutatype inequalities with negative powers. Nihonkai Math J, 1998, 9: 213-218
[6]Furuta T. Extension of the Furuta inequality and AndoHiai logmajorization. Linear Algebra Apple,1995, 219 139-155
[7]Yang Changsen. An order preserving inequality Via Furuta inequality Ⅱ.Linear Algebra Apple, 2001, 331: 89-100
[8]Fujii M, Furuta T, Kamei E. Complements to the Furuta inequality Ⅲ. Math Japan, 1997, 45: 25-32 |