[1] Wei Y, Qiao S. The representation and approximation of the Drazin inverse if a linear operator in Hilbert
space. Appl Math Comp, 2003, 138}(1): 77--89
[2] Du H K, Deng C Y. The representation and characterization of Drazin inverses of operators on a Hilbert space. Linear Algebra Appl, 2005, 407}(1): 117--124
[3] Barraa M, Boumazgour M. A note on the spectra of upper triangular operator matrix. Proc Amer Math Soc, 2003, 131(10): 3083--3088
[4] Cao X H, Meng B. Essential appoximate point spectra and Weyl's theorem for operator matrices. J Math Anal Appl, 2005, 304(2): 759--771
[5] Cao X H, et al. Weyl's theorem for upper triangular operator matrices. Linear Algebra Appl, 2005, 420(1): 61--73
[6] Djordjevi\'{c} D S. Perturbations spectra of operator matrices. J Operator Theroy, 2002, 48(2): 467--486
[7] Djordjevi\'{c} D S, Stanimirovi\'{c} P S. On the generalized Drazin inverse and generalized resolvent. Czechoslovak Math J, 2001, 126(5): 617--634
[8] Du H K, Pan J. Perturbation of spectrums of 2×2 operator matrices. Proc Amer Math Soc, 1994, 121(3): 761--776
[9] Han J K, et al. Invertible completions of 2×2 operator matrices. Proc Amer Math Soc, 1999, 128(1): 119--123
[10] Lee W Y. Weyl's theorem of operator matrices. Integr Equ Oper Theory, 1998, 32(1): 319--331
[11] Lee W Y. Weyl spectra of operator matrices. Proc Amer Math Soc, 2000, 129(1): 131--138
[12] Li Y, et al. Intersections of the left and right essential spectra of 2×2 upper triangular operator matrices. Bull London Math Soc, 2004, 36: 811--819
[13] Herrero D A. Approximation of Hilbert Space Operators. Boston, London, Melbourne: Pitman Advanced Publishing Program, 1982
|