数学物理学报

• 论文 • 上一篇    下一篇

一类算子值解析函数族的极值点

彭志刚   

  1. (湖北大学数学与计算机学院 武汉 430062)
  • 收稿日期:2007-06-18 修回日期:2008-08-03 出版日期:2008-10-25 发布日期:2008-10-25
  • 通讯作者: 彭志刚
  • 基金资助:
    基金项目:国家自然科学基金(10771053)资助

The Extreme Points of a Class of Analytic Operator-valued Functions

Peng Zhigang   

  1. (College of Mathematics and Computer Science, Hubei University, Wuhan 430062)
  • Received:2007-06-18 Revised:2008-08-03 Online:2008-10-25 Published:2008-10-25
  • Contact: Peng Zhigang

摘要: H 是一个Hilbert空间. B(H) 表示所有H H 的有界线性算子构成的Banach空间. 设 T= {f(z): f(z)=zI-∑n=2 znAn 在单位圆盘|z|<1上解析, 其中系数AnHH 的紧正Hermitian算子, I 表示 H 上的恒等算子, ∑n=2 n(An x, x) ≤1 对所有xH, ∣|x∣∣=1 成立. 该文研究了函数族 T 的极值点.

关键词: 极值点, 紧的正Hermitian算子, Hermitian矩阵

Abstract: Let H be a Hilbert space. B(H) denotes the Banach space of all bounded linear operators of H into H. Let T ={ f(z): f(z)=zI-∑n=2 znAn is analytic on the unit disk |z|<1, where the coefficients An are compact positive Hermitian operators of H into H and I denotes the identity operator on H, ∑n=2 n(An x, x) ≤ 1 for any x ∈ H with ∣|x|∣=1. In this paper the author investigates the extreme points of T .

Key words: Extreme point, Compact positive Hermitian operator, Hermitian matrix

中图分类号: 

  • 30C45