数学物理学报

• 论文 • 上一篇    下一篇

嵌入在克莱茵瓶上的图的最大亏格

黄元秋;唐玲;刘彦佩   

  1. 湖南师范大学数学与计算机科学学院 长沙 410081
  • 收稿日期:2005-05-11 修回日期:2007-04-02 出版日期:2008-06-25 发布日期:2008-06-25
  • 通讯作者: 黄元秋
  • 基金资助:
    国家自然科学基金(10771062)及教育部``新世纪优秀人才支持计划''(NCET-07-0276)资助

Maximum Genus of Graphs Embedded in the Klein Bottle

Huang Yuanqiu ;Tang Ling ;Liu Yanpei   

  1. Department of Mathematics, Hunan Normal University, Changsha 410081
  • Received:2005-05-11 Revised:2007-04-02 Online:2008-06-25 Published:2008-06-25
  • Contact: Huang Yuanqiu

摘要: 设$\phi: G\rightarrow S$是图$G$在曲面$S$上的2 -胞腔嵌入. 若$G$的所有面都是依次相邻, 即嵌入图$G$的对偶图有哈密顿圈, 则将$\phi$称为一个面依次相邻的嵌入. 该文研究了在克莱茵瓶上有面依次相邻嵌入的图的最大亏格.

关键词: 最大亏格, 上可嵌入性, 亏数, 克莱茵瓶

Abstract: Let $\phi: G\rightarrow S$ be a 2-cell embedding of a graph $G$ into a surface $S$. If all faces of $G$ are consecutively adjacent, equivalently the dual graph of the embedded graph $G$ contains a Hamilton circuit, then the embedding $\phi$ is said to be a consecutively adjacent face embedding. In this paper the authors study the maximum genus of a graph that admits a consecutively adjacent face embedding in the Klein Bottle.

Key words: Maximum Genus, Upper Embeddable, Deficiency Number, Klein Bottle

中图分类号: 

  • 05C10