数学物理学报
• 论文 • 上一篇 下一篇
黄元秋;唐玲;刘彦佩
收稿日期:
修回日期:
出版日期:
发布日期:
通讯作者:
基金资助:
Huang Yuanqiu ;Tang Ling ;Liu Yanpei
Received:
Revised:
Online:
Published:
Contact:
摘要: 设ϕ:G→S是图G在曲面S上的2 -胞腔嵌入. 若G的所有面都是依次相邻, 即嵌入图G的对偶图有哈密顿圈, 则将ϕ称为一个面依次相邻的嵌入. 该文研究了在克莱茵瓶上有面依次相邻嵌入的图的最大亏格.
关键词: 最大亏格, 上可嵌入性, 亏数, 克莱茵瓶
Abstract: Let ϕ:G→S be a 2-cell embedding of a graph G into a surface S. If all faces of G are consecutively adjacent, equivalently the dual graph of the embedded graph G contains a Hamilton circuit, then the embedding ϕ is said to be a consecutively adjacent face embedding. In this paper the authors study the maximum genus of a graph that admits a consecutively adjacent face embedding in the Klein Bottle.
Key words: Maximum Genus, Upper Embeddable, Deficiency Number, Klein Bottle
中图分类号:
黄元秋;唐玲;刘彦佩. 嵌入在克莱茵瓶上的图的最大亏格[J]. 数学物理学报, 2008, 28(3): 403-411.
Huang Yuanqiu ;Tang Ling ;Liu Yanpei. Maximum Genus of Graphs Embedded in the Klein Bottle[J]. Acta mathematica scientia,Series A, 2008, 28(3): 403-411.
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://121.43.60.238/sxwlxbA/CN/
http://121.43.60.238/sxwlxbA/CN/Y2008/V28/I3/403
Cited