数学物理学报

• 论文 • 上一篇    

精细辛几何算法的误差估计

徐明毅;张勇传   

  1. 华中科技大学水电及数字化工程学院 武汉 430074
  • 收稿日期:2003-12-01 修回日期:2004-12-28 出版日期:2006-04-25 发布日期:2006-04-25
  • 通讯作者: 徐明毅
  • 基金资助:
    国家自然科学基金(40302029)和华中科技大学博士后基金(0101271026)资助

Accuracy Estimation of Precise Symplectic Integration Method

Xu Mingyi;Zhang Yongchuan   

  1. School of Hydroelectric and Digital Engineering, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2003-12-01 Revised:2004-12-28 Online:2006-04-25 Published:2006-04-25
  • Contact: Xu Mingyi

摘要: 该文讨论了精细辛几何算法的计算误差,先展开二阶和四阶精细辛几何算法的表达式得到误差同精细剖分数目的关系,然后分析了任意阶精细辛几何算法的误差,得到了一致简洁的结果,总的误差可近似表示为单个精细步长的误差乘以剖分数目,最后讨论了在要求控制精度下剖分数目的选取,该方法克服了算法精度对积分时间步长的依赖性.

关键词: 辛算法, 精细积分, 误差分析

Abstract: In this paper the calculation accuracy of precise symplectic integration method is discussed. At first, the two and four degree accuracy algorithms are analyzed and the relation of the error to the value of the precise integration number is obtained.Then, the accuracy of any degree precise symplectic algorithm is also discussed and the obtained result is the same and simple. The total error of the method can be approximately written in the calculation error of one time step multiplied by the integration number. Finally, the appropriate integration number is estimated at the control accuracy. It can be found that by this method the accuracy of precise symplectic integration will no longer be controlled by the value of the time step.

Key words: Symplectic algorithm, Precise integration method, Accuracy analysis

中图分类号: 

  • 65P10