数学物理学报

• 论文 • 上一篇    下一篇

一类广义Gauss型求积公式

曹丽华   

  1. 深圳大学数学与计算科学学院数学系, 深圳 518060
  • 收稿日期:2004-12-08 修回日期:2006-01-11 出版日期:2007-06-25 发布日期:2007-06-25
  • 通讯作者: 曹丽华
  • 基金资助:
    基金项目:国家自然科学基金(10571121)和广东省自然科学基金(5010509)资助

Generalized Gaussian Quadrature Formulas

Cao Lihua   

  1. Department of Mathematics, College of Mathematics & Computational Science, Shenzhen University, Shenzhen 518060
  • Received:2004-12-08 Revised:2006-01-11 Online:2007-06-25 Published:2007-06-25
  • Contact: Cao Lihua

摘要: 基于被积函数在n次第一类和第二类Chebyshev多项式的零点处的差商,该本构造了两种Gauss型求积公式. 这些求积公式包含了某些已知结果作为特例.更重要的是这些新结果与Gauss-Turan求积公式有密切的联系.

关键词: 广义Gauss型求积公式, Gauss-Turan求积公式, s -正交多项式, Cotes数, 最高代数精度

Abstract: The purpose of this paper is to construct a generalized Gaussian quadrature rule based on the divided differences of the integrand at the zeros of the n-th Chebyshev polynomial of the first kind. Another similar quadrature rule based on the divided differences at the zeros of the n-th Chebyshev polynomial of the second kind is also considered. The obtained results include some existing results as special cases. The interesting thing here is that these new results are closely related to the so-called Gauss-Turan quadrature formulas.

Key words: Generalized Gaussian quadrature rule, Gauss-Turan quadrature, s-orthogonal polynomial, Cotes number, Highest algebraic degree of precision

中图分类号: 

  • 65D30