数学物理学报

• 论文 • 上一篇    下一篇

一个肿瘤生长自由边界问题解的渐近性态

卫雪梅; 崔尚斌   

  1. 广东工业大学应用数学学院 广州 510090
  • 收稿日期:2005-09-06 修回日期:2006-06-04 出版日期:2007-08-25 发布日期:2007-08-25
  • 通讯作者: 卫雪梅
  • 基金资助:
    国家自然科学基金(10471157)资助

Asymptotic Behavior of Solutions for a Free Boundary Problem Modelling Tumor Growth

Wei Xuemei; Cui Shangbin   

  1. Department of Applied Mathematics, Guangdong University of Technology, Guangzhou 510090
  • Received:2005-09-06 Revised:2006-06-04 Online:2007-08-25 Published:2007-08-25
  • Contact: Wei Xuemei

摘要: 该文研究根据Byrne和Chaplain的思想建立的一个描述抑制物作用下无坏死核肿瘤生长的数学模型, 这个模型是一个非线性反应扩散方程组的自由边界问题. 作者运用反应扩散方程理论中的上下解方法结合自由边界问题的迭代技巧, 研究了解的渐近性态, 在营养物消耗函数f、抑制物消耗函数g和肿瘤细胞繁衍函数S的一些一般条件下,证明当常数c1,c2(肿瘤细胞分裂速率和营养物、抑制物扩散速率的比值)都非常小时,在一定的初边值条件下肿瘤趋于消失,在另外一些初边值条件下肿瘤半径趋于一个常数,进而时变解将趋于一个稳态解.

关键词: 肿瘤生长, 自由边界问题, 渐近性态

Abstract: In this paper the authors study a mathematical model of the effect of inbitors on the growth of nonnecrotic tumors based on the idea of Byrne and Chaplain. This model is a free boundary problem of a system of nonlinear reaction diffusion equations. The authors apply the monotone method in the theory of reaction diffusion equations combined with the iteration technique of free boundary problems to obtain asymptotic behavior of the solution, and prove that under some general assumptions on the nutrient consumption rate function f, the inhibitor consumption rate function g and the tumor cell proliferation rate function S, the global solution of this problem tends to the trivial stationary solution (which corresponds to the vanishing state of the tumor) in certain situations, and converges to a nontrival stationary solution (which corresponds to the dormant state of the tumor) in certain other situations, as the time goes to infinity.

Key words: Tumor growth, Free boundary problem, Asymptotic behavior

中图分类号: 

  • 35K35