数学物理学报

• 论文 • 上一篇    下一篇

关于(α,β) -度量的S -曲率

崔宁伟   

  1. 西南大学数学与统计学院, 重庆 400715
  • 收稿日期:2006-01-25 修回日期:2006-09-13 出版日期:2006-12-25 发布日期:2006-12-25
  • 通讯作者: 崔宁伟

On the S-curvature of Some (α,β)-metrics

Cui Ningwei   

  1. School of Mathematics and Statistics, Southwest University, Chongqing 400715
  • Received:2006-01-25 Revised:2006-09-13 Online:2006-12-25 Published:2006-12-25
  • Contact: Cui Ningwei

摘要: 给出(α,β) -度量F=α\phi(β/α)的S -曲率的计算公式. 证得对一般的(α,β) -度量,当β为关于α长度恒定的Killing1 -形式时,S=0.研究了Matsumoto -度量F=α2/(α-β)和(α,α) -度量F=α+εβ+kβ2/α)的S -曲率, 证得S=0当且仅当β为关于α长度恒定的Killing1 -形式.同时还得到这两类度量成为弱Berwald度量的充要条件.其中\phi(s)为光滑函数,α(y)=\sqrt{aij(x)yiyj}为黎曼度量,β(y)=bi(x)yi为非零1 -形式且ε,k≠ 0为常数.

关键词: (α,β) -度量, S -曲率, 弱Berwald -度量

Abstract: This paper gives an explicit formula of the S-curvature of (α,β)-metrics F=α\phi(β/α), and proves that if β is Killing 1-form of constant length with respect to α, then S=0. Next, the author studies the S-curvature of Matsumoto-metric F=α2/(α-β) and (α,β)-metrics F=α+εβ+kβ2/α), and obtains that S=0 if and only if β is Killing 1-form of constant length with respect to α. Actually, the author also obtains the condition of above two metrics to be weak Berwaldian. Here \phi(s) is a C function, α(y)=\sqrt{aij(x)yiyj} is Riemannian metric, β(y)=bi(x)yi is non zero 1-form and ε,k≠ 0 are constants.

Key words: (α,β) -metric, S-curvature, Weak Berwaldian metric

中图分类号: 

  • 53B40