数学物理学报 ›› 2008, Vol. 28 ›› Issue (6): 1232-1241.

• 论文 • 上一篇    下一篇

测度链上p-Laplacian 边值问题的三个正对称解

苏有慧1|2;李万同2   

  1. (1.徐州工程学院数理学院 徐州 221008|2.兰州大学数学与统计学院 兰州 730000)
  • 收稿日期:2006-12-05 修回日期:2008-05-11 出版日期:2008-12-25 发布日期:2008-12-25
  • 通讯作者: 苏有慧
  • 基金资助:

    国家自然科学基金(10571078)和教育部高等学校教学科研奖励计划资助

Triple Positive Symmetric Solutions of Two-Point BVPs for p-Laplacian Dynamic Equations on Time Scales

Su Youhui1,2;Li Wantong2   

  1. (1.Mathematics and Physical Sciences Technology, Xuzhou Institute of Technology, Xuzhou 221008|2.School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000)
  • Received:2006-12-05 Revised:2008-05-11 Online:2008-12-25 Published:2008-12-25
  • Contact: Su Youhui

摘要:

该文研究了p-Laplacian 动力边值问题 (g(u(t)))+a(t)f(t, u(t))=0, t ∈ [0, T] T, u(0)=u(T)=w, u(0)=-u(T) 正解的存在性. 其中w是非负实数, g(ν)=|ν| p-2ν, p>1 . 根据对称技巧和五泛函不动点定理, 证明了边值问题至少有三个正的对称解, 同时, 给出了一个例子验证了我们的结果.

关键词: 测度链, 边值问题, 正对称解, p-Laplacian, 不动点定理.

Abstract:

This paper is concerned with the p-Laplacian boundary value problem (g(u(t)))+a(t)f(t, u(t))=0 for t ∈ [ 0, T]T, u(0)=u(T)=w, u(0)=-u(T), where w is a
nonnegative real number and g(ν)=lν|p-2ν with p>1 . By using symmetry technique and a five functionals fixed-point theorem, we prove that the boundary value problem has at least three positive symmetric solutions. As application, an example is given to illustrate our result.

Key words: Time scales, Boundary value problem, Positive symmetric solution, p-Laplacian, Fixed point theorem

中图分类号: 

  • 34B15