数学物理学报

• 论文 • 上一篇    下一篇

非线性常微分方程初值问题的间断有限元

李天然;陈传淼   

  1. 湖南城市学院数学与计算科学系;湖南师范大学计算所
  • 收稿日期:2004-01-23 修回日期:1900-01-01 出版日期:2006-02-25 发布日期:2006-02-25
  • 通讯作者: 李天然
  • 基金资助:
    国家重点基础研究计划(G1999032804);国家自然科学基金(19331021)

Discontinuous Finite Elements in Solving Initial Value Problem of Nonlinear ODE

Li Tianran;Chen Chuanmiao   

  1. Dpeartment of Mathematics and Calculation Science, Hunan City University; Institute of Computation, Hunan Normal University
  • Received:2004-01-23 Revised:1900-01-01 Online:2006-02-25 Published:2006-02-25
  • Contact: Li Tianran

摘要: 该文用m次间断有限元求解非线性常微分方程初值问题u'=f(x,u),u(0)=u0,用单元正交投影及正交性质证明了当m≥1时,m次间断有限元在节点xj的左极限U(xj-0)有超收敛估计(u-U(xj-0)=O(h2m+1),在每个单元内的m+1阶特征点xji上有高一阶的超收敛性(u-U)(xji)=O(hm+2).

关键词: 非线性, 常微方分程, 初值问题, 间断有限元, 超收敛

Abstract: In this paper the initial value problem of nonlinear ODE is solved with discontinuous finite elements of order u'=f(x,u),u(0)=u0. For m≥1, the authors prove that the left limits of discontinuous finite elements of order m at their node have a superconvergence estimate (u-U(xj-0)=O(h2m+1) and at characteristic points xji of order m+1 of every elements. There is the superconvergence estimate (u-U)(xji)=O(hm+2).

Key words: Nonlinear, Ordinary Differential Equation(ODE), Initial value problem, Discontinuous finite element, Superconvergence

中图分类号: 

  • 65N30