数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 334-346.
收稿日期:
2024-01-05
修回日期:
2024-09-16
出版日期:
2025-04-26
发布日期:
2025-04-09
作者简介:
林艳雪,E-mail:基金资助:
Received:
2024-01-05
Revised:
2024-09-16
Online:
2025-04-26
Published:
2025-04-09
Supported by:
摘要:
该文主要证明对几乎所有频率, 当李雅普诺夫指数为正时, 斜移定义的 Verblunsky 系数生成的 CMV 矩阵的李雅普诺夫行为和动态局域化.
中图分类号:
林艳雪. 斜移 CMV 矩阵的李雅普诺夫行为和动态局域化[J]. 数学物理学报, 2025, 45(2): 334-346.
Yanxue Lin. Dynamical Localization for the CMV Matrices with Verblunsky Coeffcients Defined by the Skew-Shift[J]. Acta mathematica scientia,Series A, 2025, 45(2): 334-346.
[1] | Avila A, Bochi J, Damanik D. Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts. Duke Math J, 2009, 146(2): 253-280 |
[2] | Avila A, Jitomirskaya S. Almost localization and almost reducibility. J Eur Math Soc, 2009, 12(1): 93-131 |
[3] | Bochner S, Martin W T. Several Complex Variables. Princeton NJ: Princeton University Press, 1948 |
[4] | Bourgain J. Green's Function Estimates for Lattice Schrödinger Operators and Applications. Princeton NJ: Princeton University Press, 2005 |
[5] | Bourgain J, Goldstein M. On nonperturbative localization with quasi-periodic potential. Ann of Math, 2000, 152(3): 835-879 |
[6] |
Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on |
[7] |
Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on ![]() |
[8] |
Bourgain J, Schlag W. Anderson localization for Schrödinger operators on |
[9] | Bucaj V, Damanik D, Fillman J, et al. Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent. Trans Amer Math Soc, 2019, 372(5): 3619-3667 |
[10] | Cantero M J, Moral L, Grünbaum F A, Velázquez L. Matrix-valued Szegö polynomials and quantum random walks. Comm Pure Appl Math, 2010, 63(4): 464-507 |
[11] | Cantero M J, Moral L, Velázquez L. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl, 2003, 362: 29-56 |
[12] | Cedzich C, Werner A H. Anderson localization for electric quantum walks and skew-shift CMV matrices. Comm Math Phys, 2021, 387(3): 1257-1279 |
[13] |
Chulaevsky V A, Sinai Ya G. Anderson localization for the ![]() |
[14] | Damanik D. Schrödinger operators with dynamically defined potentials. Ergodic Theory Dynam Systems, 2017, 37(6): 1681-1764 |
[15] | Damanik D, Fillman J, Lukic M, Yessen W. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete Contin Dyn Syst S, 2016, 9(4): 1009-1023 |
[16] | Davis E B, Simon B. Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle. J Approximation Theory, 2006, 141(2): 189-213 |
[17] | Fillman J, Ong D C. Purely singular continuous spectrum for limit-periodic CMV operators with applications to quantum walks. J Funct Anal, 2017, 272(12): 5107-5143 |
[18] | Goldstein M, Schlag W. Hölder continuity of the integrated density of the sates for quasiperodic Schrödinger equations and averages of shifts of subharmonic functions. Ann of Math, 2001, 154(1): 155-203 |
[19] | Guo S, Piao D. Lyapunov behavior and dynamical localization for quasi-periodic CMV matrices. Linear Algebra Appl, 2020, 606: 68-89 |
[20] | Kingman J. Subadditive ergodic theory. Ann Probab, 1973, 1: 883-899 |
[21] | Klein S. Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J Funct Anal, 2005, 218(2): 255-292 |
[22] | Krüger H. Orthogonal polynomials on the unit circle with Verblunsky coefficients defined by the skew-shift. Int Math Res Not, 2013, 2013(18): 4135-4169 |
[23] | Krüger H. The spectrum of skew-shift Schrödinger operators contains intervals. J Funct Anal, 2012, 262(3): 773-810 |
[24] | Lagendijk A, Tiggelen B, Wiersma D. Fifty years of Anderson localization. Phys Today, 2009, 62(8): 24-29 |
[25] | Lin Y X, Piao D X, Guo S Z. Anderson localization for the quasi-periodic CMV matrices with Verblunsky coefficients defined by the skew-shift. J Funct Anal, 2023, 285(4): 109975 |
[26] | Simon B. Orthogonal Polynomials on the Unit Circle. Province RI: American Mathematical Society, 2005 |
[27] | Sinai Y G. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J Stat Phys, 1987, 46(5/6): 861-909 |
[28] | Tao K. Non-perturbative positive Lyapunov exponent of Schrödinger equations and its applications to skew-shift mapping. J Differential Equations, 2019, 266(6): 3559-3579 |
[29] |
Wang F, Damanik D. Anderson localization for quasi-periodic CMV matrices and quantum walks. J Funct Anal, 2019, 276(6): 1978-2006
doi: 10.1016/j.jfa.2018.10.016 |
[30] | Zhang Z. Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrödinger operators. J Spectr Theory, 2020, 10(4): 1471-1517 |
[31] | Zhu X W. Localization for the random CMV matrices. J Approx Theory, 2024, 298: 106008 |
[1] | 张怡然, 黎定仕. 脉冲分数阶格点系统的不变测度[J]. 数学物理学报, 2024, 44(6): 1563-1576. |
[2] | 连媛, 刘红军, 朱斌. 随机动力系统的 Weyl 平均等度连续性和 Weyl 平均敏感性[J]. 数学物理学报, 2024, 44(6): 1595-1606. |
[3] | 肖建荣. 稳健可达双曲排斥集[J]. 数学物理学报, 2024, 44(1): 1-11. |
[4] | 付亲宏, 熊良林, 张海洋, 秦娅, 权沈爱. 具有半马尔可夫跳跃的时变时滞系统的滑模控制研究[J]. 数学物理学报, 2023, 43(2): 549-562. |
[5] | 朱凯旋, 孙涛, 谢永钦. 带有分布导数的反应扩散方程在![]() |
[6] | 朱凯旋,谢永钦,梅鑫钰,邓习军. 带有时滞项的超三次弱阻尼波方程一致吸引子的存在性[J]. 数学物理学报, 2022, 42(1): 86-102. |
[7] | 孙悦,张道祥,周文. 恐惧效应对带时滞的反应扩散捕食系统的稳定区间的影响[J]. 数学物理学报, 2021, 41(6): 1980-1992. |
[8] | 杨晓芳,唐孝,卢天秀. 非自治复合系统的集态敏感性和集态可达性[J]. 数学物理学报, 2021, 41(5): 1545-1554. |
[9] | 朱凯旋,谢永钦,周峰,邓习军. 带有时滞项的复Ginzburg-Landau方程的拉回吸引子[J]. 数学物理学报, 2020, 40(5): 1341-1353. |
[10] | 徐兰. 次可加拓扑压变分原理的另一证明[J]. 数学物理学报, 2020, 40(4): 977-982. |
[11] | 邵仪,阿春香. 具有尖点的四次Liénard系统的极限环分支[J]. 数学物理学报, 2020, 40(3): 619-630. |
[12] | 余志恒,龚小兵. 多项式型迭代方程的多项式解[J]. 数学物理学报, 2019, 39(6): 1352-1364. |
[13] | 周庆华,万立,刘杰. 具有变时滞的神经型Hopfield神经网络的全局吸引子研究[J]. 数学物理学报, 2019, 39(4): 823-831. |
[14] | 阳超,李润洁. 一类具有不连续捕获的Lasota-Wazewska模型周期解存在性及稳定性分析[J]. 数学物理学报, 2019, 39(4): 785-796. |
[15] | 陈苗苗,裴永珍,梁西银,吕云飞. 害虫治理SI模型的最优脉冲控制策略[J]. 数学物理学报, 2019, 39(3): 689-704. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 110
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|