[1] |
闫文文, 许美珍. 边界条件含有特征参数的四阶微分算子的自伴性和特征值的依赖性. 数学物理学报, 2022, 42A(3): 671-693
|
|
Yan W W, Xu M Z. The self-adjointness and dependence of eigenvalues of fourth-order differential operator with eigenparameters in the boundary conditions. Acta Mathematica Scientia, 2022, 42A(3): 671-693
|
[2] |
孙康, 高云兰. 一类边界条件含谱参数的微分算子. 数学物理学报, 2022, 42A(3): 661-670
|
|
Sun K, Gao Y L. A class of differential operators with eigenparameter dependent boundary conditions. Acta Mathematica Scientia, 2022, 42A(3): 661-670
|
[3] |
Sun J. On the self-adjoint extensions of symmetric ordinary differential operators with middle deficiency indices. Acta Mathematica Sinica, 1986, (2): 152-167
|
[4] |
王爱平. 关于 Weidmann 猜想及具有转移条件微分算子的研究[D]. 呼和浩特: 内蒙古大学, 2006
|
|
Wang A P. On Weidmann's conjecture and differential operators with transmission conditions[D]. Hohhot: Inner Mongolia University, 2006
|
[5] |
Wang A P, Sun J, Zettl A. Characterization of domains of self-adjoint ordinary differential operators. J Differential Equations, 2009, 246(4): 1600-1622
doi: 10.1016/j.jde.2008.11.001
|
[6] |
Hao X L, Sun J, Wang A P. Characterization of domains of self-adjoint ordinary differential operators II. Results in Mathematics, 2012, 61: 255-281
|
[7] |
Cao Z J, Sun J. On self-adjointness of the product of two second-order differential operators. Acta Mathematica Sinica (English Series), 1999, 15(3): 375-386
|
[8] |
An J Y, Sun J. On self-adjointness of the product of two $n$-order differential operators on $[a, b]$. Annals of Differential Equations, 1998, 14(1): 50-57
|
[9] |
An J Y, Sun J. On the self-adjointness of the product operators of two mth-order differential operators on [0, +$\infty$). Acta Mathematica Sinica (English Seris), 2004, 20(5): 793-802
|
[10] |
杨传富. 极限点型 Sturn-Liouille 算子乘积的自伴性. 系统科学与数学, 2006, 26(3): 368-374
doi: 10.12341/jssms09207
|
|
Yang C F. Self-adjointness of products of the limit-point Sturm-Liouville operators. Journal of Systems Science and Mathematical Sciences, 2006, 26(3): 368-374
doi: 10.12341/jssms09207
|
[11] |
张新艳, 王万义, 杨秋霞. 三个二阶微分算子积的自伴性. 内蒙古师范大学学报(自然科学汉文版), 2007, 36(1): 35-42
|
|
Zhang X Y, Wang W Y, Yang Q X. On self-adjointness of the product of three second-order differential operators. Journal of Inner Mongolia Normal University (Natural Science Edition), 2007, 36(1): 35-42
|
[12] |
郑建平. 两个奇数阶微分算子乘积的自共轭性[D]. 呼和浩特: 内蒙古大学, 2009
|
|
Zheng J P. On the self-adjointness of product of two odd-order differential operators[D]. Hohhot: Inner Mongolia University, 2009
|
[13] |
郭小燕. 四个二阶微分算子乘积的自共轭性[D]. 呼和浩特: 内蒙古大学, 2012
|
|
Guo X Y. The Self-adjointness of Product of Four Second-order Differential Operators[D]. Hohhot: Inner Mongolia University, 2012
|
[14] |
林秋红. 一类四阶与六阶微分算子积的自伴性. 四川理工学院学报(自然科学版), 2019, 32(3): 74-79
|
|
Lin Q H. Self-adjointness of class 4th-order and 6th-order differential operator products. Journal of Sichuan University of & Engineering (Natural Science Edition), 2019, 32(3): 74-79
|
[15] |
杨传富, 黄振友, 杨孝平. $2n$ 阶微分算子乘积自伴的充分必要条件. 数学物理学报, 2006, 26A(6): 953-962
|
|
Yang C F, Huang Z Y, Yang X P. A necessary and sufficient condition for self-adjointness of products of $ n$th-order differential operators. Acta Mathematica Scientia, 2006, 26A(6): 953-962
|
[16] |
Möller M, Zettl A. Symmetric differential operators and their Friedrichs extension. Journal of Differential Equations, 1995, (115): 50-69
|
[17] |
Wang A P, Zettl A. Characterization of domains of symmetric and self-adjoint ordinary differential operators. Electronic Journal of Differential Equations, 2018, 2018(15): 1-18
|
[18] |
Wang A P, Zettl A. Ordinary Differential Operators. Providence, RI: American Mathematical Society, 2019
|
[19] |
Wang A P, Zettl A. A symmetric GKN-type theorem and symmetric differential operators. Journal of Differential Equations, 2018, (265): 5156-5176
|