[1] |
Ko W, Ryu K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J Differential Equations, 2006, 231(2): 534-550
doi: 10.1016/j.jde.2006.08.001
|
[2] |
Peng R, Shi J. Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case. J Differential Equations, 2009, 247(3): 866-886
doi: 10.1016/j.jde.2009.03.008
|
[3] |
Lu M, Huang J. Global analysis in Bazykin's model with Holling II functional response and predator competition. J Differential Equations, 2021, 280: 99-138
doi: 10.1016/j.jde.2021.01.025
|
[4] |
Chen W Y, Wang M X. Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion. Math Comput Model, 2005, 42(1): 31-44
doi: 10.1016/j.mcm.2005.05.013
|
[5] |
Zhao S. Analysis on stochastic dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response. Int J Biomath, 2021, 14(2): 2050058
doi: 10.1142/S1793524520500588
|
[6] |
Wang R, Jia Y F. Analysis on bifurcation for a predator-prey model with Beddington-DeAngelis functional response and non-selective harvesting. Acta Appl Math, 2016, 143: 15-27
doi: 10.1007/s10440-015-0025-2
|
[7] |
Liu X, Huang Q. The dynamics of a harvested predator-prey system with Holling type IV functional response. Biosystems, 2018, 169: 26-39
|
[8] |
Liu X, Huang Q. Analysis of optimal harvesting of a predator-prey model with Holling type IV functional response. Ecol Complex, 2020, 42: 100816
doi: 10.1016/j.ecocom.2020.100816
|
[9] |
Djilali S, Bentout S. Pattern formations of a delayed diffusive predator-prey model with predator harvesting and prey social behavior. Math Method Appl Sci, 2021, 44(11): 9128-9142
doi: 10.1002/mma.v44.11
|
[10] |
Duque C, Lizana M. On the dynamics of a predator-prey model with nonconstant death rate and diffusion. Nonlinear Anal: RWA, 2011, 12(4): 2198-2210
doi: 10.1016/j.nonrwa.2011.01.002
|
[11] |
Yang R, Wei J. Bifurcation analysis of a diffusive predator-prey system with nonconstant death rate and Holling III functional response. Chaos Soliton Fract, 2015, 70: 1-13
doi: 10.1016/j.chaos.2014.10.011
|
[12] |
Peng H, Zhang X. The dynamics of stochastic predator-prey models with non-constant mortality rate and general nonlinear functional response. J Nonl Mod Anal, 2020, 2: 495-511
|
[13] |
Ye J, Wang Y, Jin Z, et al. Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Math Biosci Eng, 2022, 19(4): 3402-3426
doi: 10.3934/mbe.2022157
pmid: 35341257
|
[14] |
李海侠. 一类食物链模型正解的稳定性和唯一性. 数学物理学报, 2017, 37A(6): 1094-1104
|
|
Li H X. Stability and uniqueness of positive solutions for a food-chain model. Acta Math Sci, 2017, 37A(6): 1094-1104
|
[15] |
Li H X, Li Y L, Yang W B. Existence and asymptotic behavior of positive solutions for a one-prey and two-competing-predators system with diffusion. Nonlinear Anal: RWA, 2016, 27: 261-282
doi: 10.1016/j.nonrwa.2015.07.010
|
[16] |
Dancer E N. On the indices of fixed points of mappings in cones and applications. J Math Anal Appl, 1983, 91(1): 131-151
doi: 10.1016/0022-247X(83)90098-7
|
[17] |
Jia Y, Wu J, Nie H. The coexistence states of a predator-prey model with nonmonotonic functional response and diffusion. Acta Appl Math, 2009, 108(2): 413-428
doi: 10.1007/s10440-008-9319-y
|
[18] |
Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8(2): 321-340
doi: 10.1016/0022-1236(71)90015-2
|
[19] |
Wu J H. Global bifurcation of coexistence state for a competition model in the chemostat. Nonlinear Anal, 2000, 39(7): 817-835
doi: 10.1016/S0362-546X(98)00250-8
|
[20] |
Rabinowitz P H. Some global results for nonlinear eigenvalue problems. J Funct Anal, 1971, 7(3): 487-513
doi: 10.1016/0022-1236(71)90030-9
|
[21] |
Cano-Casanova S. Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems. Nonlinear Anal: TMA, 2002, 49(3): 361-430
doi: 10.1016/S0362-546X(01)00116-X
|
[22] |
Pao C V. Quasisolutions and global attractor of reaction-diffusion systems. Nonlinear Anal: TMA, 1996, 26(12): 1889-1903
doi: 10.1016/0362-546X(95)00058-4
|