[1] |
Alibaud N, Andreianov B. Non-uniqueness of weak solutions for the fractal Burgers equation. Ann Inst Henri Poincar Anal Non Linéaire, 2010, 27: 997-1016
doi: 10.4171/aihpc
|
[2] |
Bouchard J P, Georges A. Anomalous diffusion in disordered media, Statistical mechanics, models and physical applications. Phys Rep, 1990, 195: 127-293
doi: 10.1016/0370-1573(90)90099-N
|
[3] |
Burgers J M. Correlation problem in a one-dimensional model of turbulence. Nederl Akad Wetensch Proc, 1950, 53: 247-260
|
[4] |
Caffarelli L, Silvestre L. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann of Math, 2010, 171(3): 1903-1930
doi: 10.4007/annals
|
[5] |
Chen S H, Hsia C H, Jung C Y, Kwon B. Asymptotic stability and bifurcation of time-periodic solutions for the viscous Burger's equation. J Math Anal Appl, 2017, 445: 655-676
doi: 10.1016/j.jmaa.2016.08.018
|
[6] |
Cole J D. On a quasi-linear parabolic equation occurring in aerodynamics. Quart Appl Math, 1951, 9: 225-236
doi: 10.1090/qam/1951-09-03
|
[7] |
Defterli O, D'Elia M, Du Q, et al. Fractional diffusion on bounded domains. Fract Calc Appl Anal, 2015, 18: 342-360
doi: 10.1515/fca-2015-0023
|
[8] |
Dong H, Du D, Li D. Finite time singularities and global well-posedness for fractal Burgers equations. Indiana Univ Math J, 2009, 58: 807-821
doi: 10.1512/iumj.2009.58.3505
|
[9] |
Droniou J, Gallouet T, Vovelle J. Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. J Evol Equ, 2003, 3: 499-521
doi: 10.1007/s00028-003-0503-1
|
[10] |
Galdi G P, Sohr H. Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body. Arch Ration Mech Anal, 2004, 172: 363-406
doi: 10.1007/s00205-004-0306-9
|
[11] |
Hopf E. The partial differential equation $u_{t}+uu_{x}=\mu u_{xx}$. Comm Pure Appl Math, 1950, 3: 201-230
doi: 10.1002/cpa.v3:3
|
[12] |
Hsia C H, Shiue M C. On the asymptotic stability analysis and the existence of time-periodic solutions of the primitive equations. Indiana Univ Math J, 2013, 62: 403-441
doi: 10.1512/iumj.2013.62.4902
|
[13] |
Iwabuchi T. Analyticity and large time behavior for the Burgers equation and the quasi-geostrophic equation, the both with the critical dissipation. Ann Inst Henri Poincar Anal Non Linéaire, 2020, 37: 855-876
doi: 10.4171/aihpc
|
[14] |
Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 891-907
doi: 10.1002/cpa.v41:7
|
[15] |
Kiselev A, Nazarov F, Shterenberg R. Blow up and regularity for fractal Burgers euation. Dyn Partial Differ Equ, 2008, 5: 211-240
doi: 10.4310/DPDE.2008.v5.n3.a2
|
[16] |
Kobayashi T. Time periodic solutions of the Navier-Stokes equations with the time periodic Poiseuille flow under (GOC) for a symmetric perturbed channel in $R^{2}$. J Math Soc Japan, 2015, 67: 1023-1042
|
[17] |
Mellet A, Mischler S, Mouhot C. Fractional diffusion limit for collisional kinetic equations. Arch Ration Mech Anal, 2011, 199: 493-525
doi: 10.1007/s00205-010-0354-2
|
[18] |
Miao C, Wu G. Global well-posedness of the critical Burgers equation in critiacal Besov spaces. J Differential Equations, 2009, 247: 1673-1693
doi: 10.1016/j.jde.2009.03.028
|
[19] |
Wang T, Zhang B. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete Contin Dyn Syst Ser B, 2021, 26: 1205-1221
|
[20] |
Xu F, Zhang Y, Li F. Uniqueness and stability of steady-state solution with finite energy to the fractal Burgers equation. arXiv:2107.11761v1
|