[1] |
Nash J. Equilibrium points in n-person games. P Natl Acad Sci, 1950$a$, 36: 48-49
doi: 10.1073/pnas.36.1.48
|
[2] |
Nash J. Noncooperative Games. Princeton: Princeton University, 1950
|
[3] |
Sandholm W H. Population Games and Evolutionary Dynamics. Cambridge: MIT Press, 2010
|
[4] |
Yang G H, Yang H. Stability of weakly Pareto-Nash equilibria and Pareto-Nash equlibria for multiobjective population games. Set-Valued Var Anal, 2017, 25(2): 427-439
doi: 10.1007/s11228-016-0391-6
|
[5] |
Yang Z, Zhang H Q. Essential stability of cooperative equilibria for population games. Optim Lett, 2019, 13: 1573-1582
doi: 10.1007/s11590-018-1303-5
|
[6] |
Kajii A. A generalization of Scarf's theorem: an $\alpha$-core existence theorem without transitivity or completeness. J Econ Theory, 1992, 56: 194-205
doi: 10.1016/0022-0531(92)90076-T
|
[7] |
Lahkar R, Sandholm W H. The projection dynamic and the geometry of population games. Games Econ Behav, 2008, 64(2): 565-590
doi: 10.1016/j.geb.2008.02.002
|
[8] |
Sandholm W H. Large population potential games. J Econ Theory, 2009, 144(4): 1710-1725
doi: 10.1016/j.jet.2009.02.004
|
[9] |
Reluga T C, Galvani A P. A general approach for population games with application to vaccination. Mathematical Biosciences, 2011, 230(2): 67-78
doi: 10.1016/j.mbs.2011.01.003
pmid: 21277314
|
[10] |
王明婷, 杨光惠. 群体博弈弱Nash均衡的存在性与稳定性. 数学的实践与认识, 2021, 51(15): 187-193
|
|
Wang M T, Yang G H. The existence and generic stability of weak Nash equilibria for population games. Mathematics in Practice and Theory, 2021, 51(15): 187-193
|
[11] |
陈华鑫, 贾文生. 群体博弈的逼近定理及通有收敛性. 数学物理学报, 2021, 41A(5): 1566-1573
|
|
Chen H X, Jia W S. Approximation theorem and general convergence of population games. Acta Math Sci, 2021, 41A(5): 1566-1573
|
[12] |
Yang Z, Meng D W, Wang A Q. On the existence of ideal Nash equilibria in discontinuous games with infinite criteria. Oper Res Lett, 2017, 45: 362-365
doi: 10.1016/j.orl.2017.05.004
|
[13] |
Anderlini L, Canning D. Structural stability implies robustness to bounded rationality. J Econ Theory, 2001, 101(2): 395-422
doi: 10.1006/jeth.2000.2784
|
[14] |
Yu C, Yu J. On structural stability and robustness to bounded rationality. Nonlinear Anal-TMA, 2006, 65(3): 583-592
doi: 10.1016/j.na.2005.09.039
|
[15] |
Yu C, Yu J. Bounded ratinality in multiobjective games. Nonlinear Anal-TMA, 2007, 67: 930-937
doi: 10.1016/j.na.2006.06.050
|
[16] |
王能发. 有限理性下不确定性博弈均衡的稳定性. 应用数学学报, 2017, 40(4): 562-572
doi: 10.12387/C2017047
|
|
Wang N F. The stability of equilibrium point for uncertain game under bounded rationality. Acta Math Appl Sin, 2017, 40(4): 562-572
doi: 10.12387/C2017047
|
[17] |
杨光惠, 杨辉, 向淑文. 有限理性下参数最优化问题解的稳定性. 运筹学学报, 2016, 20(4): 1-10
|
|
Yang G H, Yang H, Xiang S W. Stability of solutions to parametric optimization problems under bounded rationality. Operations Research Transactions, 2016, 20(4): 1-10
|
[18] |
俞建. 几类考虑有限理性平衡问题解的稳定性. 系统科学与数学, 2009, 29: 999-1008
doi: 10.12341/jssms08438
|
|
Yu J. Bounded rationality and stability of solution of some equilibrium problems. Journal of Systems Science and Mathematical Sciences, 2009, 29: 999-1008
doi: 10.12341/jssms08438
|
[19] |
俞建. 博弈论与非线性分析续论. 北京: 科学出版社, 2011
|
|
Yu J. Game Theory and Nonlinear Analysis (Continued). Beijing: Science Press, 2011
|
[20] |
Deguire P, Tan K K, Yuan X Z. The study of maximal elements, fixed points for $L_{s}$-majorized mappings and their applications to minimax and variational inequalities in product topological spaces. Nonlinear Analysis, 1999, 37(3): 933-951
doi: 10.1016/S0362-546X(98)00084-4
|