[1] |
Alias M A, Buenzli P R. Modeling the effect of curvature on the collective behavior of cells growing wew tissue. Biophysical Journal, 2017, 112(1): 193-204
doi: 10.1016/j.bpj.2016.11.3203
|
[2] |
Alias M A, Buenzli P R. Osteoblasts infill irregular pores under curvature and porosity controls: a hypothesis-testing analysis of cell behaviours. Biomechanics and Modeling in Mechanobiology, 2018, 17(5): 1357-1371
doi: 10.1007/s10237-018-1031-x
pmid: 29846824
|
[3] |
Alias M A, Buenzli P R. A level-set method for the evolution of cells and tissue during curvature-controlled growth. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36(1): e3279
|
[4] |
Gurtin M E, Podio-Guidugli P. A hyperbolic theory for the evolution of plane curves. SIAM J Math Anal, 1991, 22: 575-586
doi: 10.1137/0522036
|
[5] |
Rotstein H G, Brandon S, Novick-Cohen A. Hyperbolic flow by mean curvature. Journal of Crystal Growth, 1999, 198-199: 1256-1261
|
[6] |
Yau S T. Review of geometry and analysis. Asian J Math, 2000, 4: 235-278
doi: 10.4310/AJM.2000.v4.n1.a16
|
[7] |
LeFloch P G, Smoczyk K. The hyperbolic mean curvature flow. Journal De Mathématiques Pures et Appliqués, 2009, 90(6): 591-684
|
[8] |
李秀展, 王增桂. 双曲平均曲率流Cauchy问题经典解的生命跨度. 中国科学: 数学, 2017, 47(8): 953-968
doi: 10.1360/N012016-00188
|
|
Li X Z, Wang Z G. The lifespan of classical solution to the cauchy problem for the hyperbolic mean curvature flow. Sci Sin Math, 2017, 47(8): 953-968
doi: 10.1360/N012016-00188
|
[9] |
LeFloch P G, Yan W P. Nonlinear stability of blow-up solutions to the hyperbolic mean curvature flow. J Differential Equations, 2020, 269(10): 8269-8307
doi: 10.1016/j.jde.2020.05.024
|
[10] |
He C L, Kong D X, Liu K F. Hyperbolic mean curvature flow. J. Differential Equations, 2009, 246: 373-390
doi: 10.1016/j.jde.2008.06.026
|
[11] |
Kong D X, Liu K F, Wang Z G. Hyperbolic mean curvature flow: Evolution of plane curves. Acta Mathematica Scientia (A special issue dedicated to Professor Wu Wenjun's 90th birthday), 2009, 29: 493-614
doi: 10.1016/S0252-9602(09)60049-7
|
[12] |
Kong D X, Wang Z G. Formation of singularities in the motion of plane curves under hyperbolic mean curvature flow. J Differential Equations, 2009, 247: 1694-1719
doi: 10.1016/j.jde.2009.04.016
|
[13] |
He C L, Huang S J, Xing X M. Self-similar solutions to the hyperbolic mean curvature flow. Acta Mathematica Scientia, 2017, 37B(3): 657-667
|
[14] |
Wang Z G. Hyperbolic mean curvature flow with a forcing term: evolution of plane curves. Nonlinear Analysis: Theory, Methods and Applications, 2014, 97: 65-82
|
[15] |
Wang Z G. Symmetries and solutions of hyperbolic mean curvature flow with a constant forcing term. Applied Mathematics and Computation, 2014, 235: 560-566
doi: 10.1016/j.amc.2013.12.134
|
[16] |
王增桂. 带有线性外力场的双曲平均曲率流Cauchy问题经典解的生命跨度. 中国科学:数学, 2013, 43(12): 1193-1208
doi: 10.1360/N012013-00062
|
|
Wang Z G. The lifespan of classical solution to the Cauchy problem for the hyperbolic mean curvature flow with a linear forcing term. Sci Sin Math, 2013, 43(12): 1193-1208
doi: 10.1360/N012013-00062
|
[17] |
Wang Z G. Hyperbolic mean curvature flow in Minkowski space. Nonlinear Analysis: Theory, Methods and Applications, 2014, 94: 259-271
|
[18] |
Mao J. Forced hyperbolic mean curvature flow. Kodai Mathematical Journal, 2012, 35(3): 500-522
|
[19] |
Mao J, Wu C X, Zhou Z. Hyperbolic inverse mean curvature flow. Czechoslovak Mathematical Journal, 2019, (2019): 1-34
|
[20] |
Zhou Z, Wu C X, Mao J. Hyperbolic curve flows in the plane. Journal of Inequalities and Applications, 2019, 2019(1): 1-17
doi: 10.1186/s13660-019-1955-4
|
[21] |
Wang Z G. Life-span of classical solutions to hyperbolic inverse mean curvature flow. Discrete Dynamics in Nature and Society, 2020, 2020: 1-12
|
[22] |
Chou K S, Wo W F. On hyperbolic Gauss curvature flows. J Diff Geom, 2011, 89(3): 455-486
|
[23] |
Wo W F, Ma F Y, Qu C Z. A hyperbolic-type affine invariant curve flow. Communications in Analysis and Geometry, 2014, 22(2): 219-245
doi: 10.4310/CAG.2014.v22.n2.a2
|
[24] |
Wang Z G. A dissipative hyperbolic affine flow. Journal of Mathematical Analysis and Applications, 2018, 465(2): 1094-1111
doi: 10.1016/j.jmaa.2018.05.053
|
[25] |
Notz T. Closed Hypersurfaces Driven by their Mean Curvature and Inner Pressure[D]. Berlin: AlbertEinstein-Institut, 2010
|
[26] |
Yan W P. Motion of closed hypersurfaces in the central force fields. J Differential Equations, 2016, 261(3): 1973-2005
doi: 10.1016/j.jde.2016.04.020
|
[27] |
Ta-Tsien L, Wen-Ci Y. Boundary Value Problems for Quasilinear Hyperbolic Systems. Carolina: Duke Univ, 1985
|