数学物理学报 ›› 2023, Vol. 43 ›› Issue (3): 771-784.
收稿日期:
2022-03-22
修回日期:
2023-01-12
出版日期:
2023-06-26
发布日期:
2023-06-01
通讯作者:
王增桂
E-mail:wangzenggui@lcu.edu.cn
基金资助:
Received:
2022-03-22
Revised:
2023-01-12
Online:
2023-06-26
Published:
2023-06-01
Contact:
Zenggui Wang
E-mail:wangzenggui@lcu.edu.cn
Supported by:
摘要:
该文研究了一类由曲率控制细胞和组织生长演化的Cauchy问题, 根据支撑函数的定义, 将拟线性退化的演化方程转化成一类非齐次拟线性双曲方程组. 进一步通过对拟线性双曲方程组的解的先验估计, 证明了该双曲曲率流Cauchy问题经典解的生命跨度.
中图分类号:
王增桂. 曲率控制细胞和组织生长演化模型的Cauchy问题[J]. 数学物理学报, 2023, 43(3): 771-784.
Wang Zenggui. Cauchy Problem for the Evolution of Cells and Tissue During Curvature-Controlled Growth[J]. Acta mathematica scientia,Series A, 2023, 43(3): 771-784.
[1] |
Alias M A, Buenzli P R. Modeling the effect of curvature on the collective behavior of cells growing wew tissue. Biophysical Journal, 2017, 112(1): 193-204
doi: 10.1016/j.bpj.2016.11.3203 |
[2] |
Alias M A, Buenzli P R. Osteoblasts infill irregular pores under curvature and porosity controls: a hypothesis-testing analysis of cell behaviours. Biomechanics and Modeling in Mechanobiology, 2018, 17(5): 1357-1371
doi: 10.1007/s10237-018-1031-x pmid: 29846824 |
[3] | Alias M A, Buenzli P R. A level-set method for the evolution of cells and tissue during curvature-controlled growth. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36(1): e3279 |
[4] |
Gurtin M E, Podio-Guidugli P. A hyperbolic theory for the evolution of plane curves. SIAM J Math Anal, 1991, 22: 575-586
doi: 10.1137/0522036 |
[5] | Rotstein H G, Brandon S, Novick-Cohen A. Hyperbolic flow by mean curvature. Journal of Crystal Growth, 1999, 198-199: 1256-1261 |
[6] |
Yau S T. Review of geometry and analysis. Asian J Math, 2000, 4: 235-278
doi: 10.4310/AJM.2000.v4.n1.a16 |
[7] | LeFloch P G, Smoczyk K. The hyperbolic mean curvature flow. Journal De Mathématiques Pures et Appliqués, 2009, 90(6): 591-684 |
[8] |
李秀展, 王增桂. 双曲平均曲率流Cauchy问题经典解的生命跨度. 中国科学: 数学, 2017, 47(8): 953-968
doi: 10.1360/N012016-00188 |
Li X Z, Wang Z G. The lifespan of classical solution to the cauchy problem for the hyperbolic mean curvature flow. Sci Sin Math, 2017, 47(8): 953-968
doi: 10.1360/N012016-00188 |
|
[9] |
LeFloch P G, Yan W P. Nonlinear stability of blow-up solutions to the hyperbolic mean curvature flow. J Differential Equations, 2020, 269(10): 8269-8307
doi: 10.1016/j.jde.2020.05.024 |
[10] |
He C L, Kong D X, Liu K F. Hyperbolic mean curvature flow. J. Differential Equations, 2009, 246: 373-390
doi: 10.1016/j.jde.2008.06.026 |
[11] |
Kong D X, Liu K F, Wang Z G. Hyperbolic mean curvature flow: Evolution of plane curves. Acta Mathematica Scientia (A special issue dedicated to Professor Wu Wenjun's 90th birthday), 2009, 29: 493-614
doi: 10.1016/S0252-9602(09)60049-7 |
[12] |
Kong D X, Wang Z G. Formation of singularities in the motion of plane curves under hyperbolic mean curvature flow. J Differential Equations, 2009, 247: 1694-1719
doi: 10.1016/j.jde.2009.04.016 |
[13] | He C L, Huang S J, Xing X M. Self-similar solutions to the hyperbolic mean curvature flow. Acta Mathematica Scientia, 2017, 37B(3): 657-667 |
[14] | Wang Z G. Hyperbolic mean curvature flow with a forcing term: evolution of plane curves. Nonlinear Analysis: Theory, Methods and Applications, 2014, 97: 65-82 |
[15] |
Wang Z G. Symmetries and solutions of hyperbolic mean curvature flow with a constant forcing term. Applied Mathematics and Computation, 2014, 235: 560-566
doi: 10.1016/j.amc.2013.12.134 |
[16] |
王增桂. 带有线性外力场的双曲平均曲率流Cauchy问题经典解的生命跨度. 中国科学:数学, 2013, 43(12): 1193-1208
doi: 10.1360/N012013-00062 |
Wang Z G. The lifespan of classical solution to the Cauchy problem for the hyperbolic mean curvature flow with a linear forcing term. Sci Sin Math, 2013, 43(12): 1193-1208
doi: 10.1360/N012013-00062 |
|
[17] | Wang Z G. Hyperbolic mean curvature flow in Minkowski space. Nonlinear Analysis: Theory, Methods and Applications, 2014, 94: 259-271 |
[18] | Mao J. Forced hyperbolic mean curvature flow. Kodai Mathematical Journal, 2012, 35(3): 500-522 |
[19] | Mao J, Wu C X, Zhou Z. Hyperbolic inverse mean curvature flow. Czechoslovak Mathematical Journal, 2019, (2019): 1-34 |
[20] |
Zhou Z, Wu C X, Mao J. Hyperbolic curve flows in the plane. Journal of Inequalities and Applications, 2019, 2019(1): 1-17
doi: 10.1186/s13660-019-1955-4 |
[21] | Wang Z G. Life-span of classical solutions to hyperbolic inverse mean curvature flow. Discrete Dynamics in Nature and Society, 2020, 2020: 1-12 |
[22] | Chou K S, Wo W F. On hyperbolic Gauss curvature flows. J Diff Geom, 2011, 89(3): 455-486 |
[23] |
Wo W F, Ma F Y, Qu C Z. A hyperbolic-type affine invariant curve flow. Communications in Analysis and Geometry, 2014, 22(2): 219-245
doi: 10.4310/CAG.2014.v22.n2.a2 |
[24] |
Wang Z G. A dissipative hyperbolic affine flow. Journal of Mathematical Analysis and Applications, 2018, 465(2): 1094-1111
doi: 10.1016/j.jmaa.2018.05.053 |
[25] | Notz T. Closed Hypersurfaces Driven by their Mean Curvature and Inner Pressure[D]. Berlin: AlbertEinstein-Institut, 2010 |
[26] |
Yan W P. Motion of closed hypersurfaces in the central force fields. J Differential Equations, 2016, 261(3): 1973-2005
doi: 10.1016/j.jde.2016.04.020 |
[27] | Ta-Tsien L, Wen-Ci Y. Boundary Value Problems for Quasilinear Hyperbolic Systems. Carolina: Duke Univ, 1985 |
[1] | 储昌木,蒙璐. 一类带有变指数增长的半线性椭圆方程正解的存在性[J]. 数学物理学报, 2021, 41(6): 1779-1790. |
[2] | 欧阳柏平,肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性[J]. 数学物理学报, 2021, 41(5): 1372-1381. |
[3] | 赵菁蕾,兰家诚,杨姗姗. 带Neumann边界条件的耗散半线性波动方程外问题的生命跨度估计[J]. 数学物理学报, 2021, 41(4): 1033-1041. |
[4] | 黄守军,孟希望. 常微分不等式及其在半线性波动方程的应用[J]. 数学物理学报, 2020, 40(5): 1319-1332. |
[5] | 李冬艳,董艳. 半线性退化椭圆方程解的奇异性与退化性[J]. 数学物理学报, 2019, 39(6): 1376-1380. |
[6] | 蒋红标,汪海航. 半线性波动方程Cauchy问题解的生命跨度估计[J]. 数学物理学报, 2019, 39(5): 1146-1157. |
[7] | 林娇燕. 颗粒与流体混合物模型解的一致估计[J]. 数学物理学报, 2018, 38(3): 565-570. |
[8] | 耿金波, 杨珍珍, 赖宁安. 半无界区域上半线性薛定谔方程初边值问题解的破裂及其生命跨度的估计[J]. 数学物理学报, 2016, 36(6): 1186-1195. |
[9] | 胡广平, 李小玲. 带有交错扩散的Leslie-Gower型三种群系统的稳态模式[J]. 数学物理学报, 2013, 33(1): 16-27. |
[10] | 李书选, 邓晶. 退化的Monge-Ampére方程解的C1,1先验估计[J]. 数学物理学报, 2012, 32(5): 950-963. |
[11] | 李中平, 徐思, 杜宛娟. 快速扩散方程的第二临界指标及解的生命跨度[J]. 数学物理学报, 2012, 32(5): 904-913. |
[12] | 陈娟; 张鲁明. Klein-Gordon-Zakharov 方程的一类初边值问题的数值解[J]. 数学物理学报, 2009, 29(2): 494-504. |
[13] | 房少梅, 郭柏灵. 一类广义耦合的非线性波动方程组在无界区域上的整体吸引子[J]. 数学物理学报, 2003, 23(4): 464-473. |
[14] | 闻国椿, 黄沙, 乔玉英, 李玉成. 二阶非线性椭圆型方程于无界域上的斜微商问题[J]. 数学物理学报, 2002, 22(1): 1-7. |
[15] | 郭定辉. 一类广义层流方程组的初值问题的局部适定性[J]. 数学物理学报, 2001, 21(4): 433-438. |
|