1 |
Cann A J, Chen Isy. Human T-cell Leukemia virus type I and II//Fields B N, Knipe D M, Howley P M. Field Virology. Philadelphia: Lippincott-Raven Publishers, 1996: 1849-1880
|
2 |
Bangham C R M . The immune response to HTLV-I. Curr Opin Immunol, 2000, 12, 397- 402
doi: 10.1016/S0952-7915(00)00107-2
|
3 |
Jacobson S . Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease. J Infect Dis, 2002, 186, S187- S192
doi: 10.1086/344269
|
4 |
Asquith B , Bangham C R M . Quantifying HTLV-I dynamics. Immunol Cell Biol, 2007, 85, 280- 286
doi: 10.1038/sj.icb.7100050
|
5 |
Beretta E , Kuang Y . Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J Math Anal, 2002, 33, 1144- 1165
doi: 10.1137/S0036141000376086
|
6 |
Asquith B , Bangham C R M . How does HTLV-I persist despite a strong cell-mediated immune response?. Trends Immunol, 2008, 29, 4- 11
doi: 10.1016/j.it.2007.09.006
|
7 |
Khajanchi S , Bera S , Roy T K . Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes. Math Comput Simul, 2021, 180, 354- 378
doi: 10.1016/j.matcom.2020.09.009
|
8 |
Tian X , Xu R . Global stability and hopf bifurcation of an HIV-1 infection model with saturation incidence and delayed CTL immune response. Appl Math Comput, 2014, 237, 146- 154
|
9 |
Li M Y , Shu H . Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection. Bull Math Biol, 2011, 73, 1774- 1793
doi: 10.1007/s11538-010-9591-7
|
10 |
Gómez-Acevedo H , Li M Y , Jacobson S . Multistability in a model for CTL response to HTLV-I infection and its implications to HAM/TSP development and prevention. Bull Math Biol, 2010, 72, 681- 696
doi: 10.1007/s11538-009-9465-z
|
11 |
Wang A , Li M Y . Viral dynamics of HIV-1 with CTL immune response. Discrete Contin Dyn Syst-Ser B, 2021, 26, 2257- 2272
doi: 10.3934/dcdsb.2020212
|
12 |
Wang S , Song X , Ge Z . Dynamics analysis of a delayed viral infection model with immune impairment. Appl Math Model, 2011, 35, 4877- 4886
doi: 10.1016/j.apm.2011.03.043
|
13 |
Rosenberg E S , Altfeld M , Poon S H , et al. Immune control of HIV-1 after early treatment of acute infection. Nature, 2000, 407, 523- 526
doi: 10.1038/35035103
|
14 |
Regoes R R , Wodarz D , Nowak M A . Virus dynamics: the effect of target cell limitation and immune responses on virus evolution. J Theor Biol, 1998, 191, 451- 462
doi: 10.1006/jtbi.1997.0617
|
15 |
Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations. New York: Springer, 1993
|
16 |
van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180 (1/2): 29- 48
|
17 |
Yan X, Li W. Stability and bifurcation in a simplified four-neuron BAM neural network with multiple delays. Discrete Dyn Nat Soc, 2006, 2006: Article ID 032529
|
18 |
Song Y , Yuan S . Bifurcation analysis in a predator-prey system with time delay. Nonlinear Anal: Real World Appl, 2006, 7, 265- 284
doi: 10.1016/j.nonrwa.2005.03.002
|
19 |
Wu J . Symmetric functional differential equations and neural networks with memory. Trans Amer Math Soc, 1998, 350, 4799- 4838
doi: 10.1090/S0002-9947-98-02083-2
|
20 |
Song C , Xu R . Mathematical analysis of an HTLV-I infection model with the mitosis of CD4+ T cells and delayed CTL immune response. Nonlinear Anal-Model Control, 2021, 26, 1- 20
doi: 10.15388/namc.2021.26.21050
|
21 |
Martcheva M. An Introduction to Mathematical Epidemiology. New York: Springer, 2015
|