数学物理学报 ›› 2022, Vol. 42 ›› Issue (6): 1653-1670.
收稿日期:
2021-10-24
出版日期:
2022-12-26
发布日期:
2022-12-16
通讯作者:
宾茂君
E-mail:bmj1999@163.com
基金资助:
Received:
2021-10-24
Online:
2022-12-26
Published:
2022-12-16
Contact:
Maojun Bin
E-mail:bmj1999@163.com
Supported by:
摘要:
该文将讨论一类由半线性发展方程和广义变分不等式所组成的微分变分不等式系统.首先, 考虑广义变分不等式解集的性质.其次, 通过利用不动点定理和半群理论证明了微分变分不等式系统解的存在性.另外, 通过运用稠定性结果证明了微分变分不等式系统的Bang-Bang准则.同时, 运用一个障碍型抛物-椭圆系统来检验该文的主要结果.
中图分类号:
施翠云,宾茂君. Banach空间中微分变分不等式系统的Bang-Bang准则[J]. 数学物理学报, 2022, 42(6): 1653-1670.
Cuiyun Shi,Maojun Bin. On the Bang-Bang Principle for Differential Variational Inequalities in Banach Spaces[J]. Acta mathematica scientia,Series A, 2022, 42(6): 1653-1670.
1 | Aubin J P , Cellina A . Differential Inclusions: Set-Valued Maps and Viability Theory. Berlin: Springer-Verlag, 1984 |
2 | Avgerinos E P , Papageorgiou N S . Differential variational inequalities in $R.N$. Indian Journal of Pure and Applied Mathematics, 1997, 28, 475- 498 |
3 |
Bin M J . Time optimal control for semilinear fractional evolution feedback control systems. Optimization, 2019, 68 (4): 819- 832
doi: 10.1080/02331934.2018.1552956 |
4 |
Bin M J , Deng H Y , Li Y X , Zhao J . Properties of the set of admissible "state control" part for a class of fractional semilinear evolution control systems. Fract Calc Appl Anal, 2021, 24 (4): 1275- 1298
doi: 10.1515/fca-2021-0055 |
5 |
Bin M J , Liu Z H . On the "bang-bang" principle for nonlinear evolution hemivariational inequalities control systems. J Math Anal Appl, 2019, 480 (1): 123364
doi: 10.1016/j.jmaa.2019.07.054 |
6 |
Bin M J , Liu Z H . Relaxation in nonconvex optimal control for nonlinear evolution hemivariational inequalities. Nonlinear Analysis: Real World Applications, 2019, 50, 613- 632
doi: 10.1016/j.nonrwa.2019.05.013 |
7 | Bohnenblust H F, Karlin S. On a theorem of ville//Kuhn H W, Tucker A W. Contributions to the Theory of Games, Vol I. Princeton, NJ: Princeton University Press, 1950: 155-160 |
8 | Bressan A . Differential inclusions with non-closed, non-convex right hand side. Diff Integral Equ, 1990, 3, 633- 638 |
9 |
Chen X J , Wang Z Y . Differential variational inequality approach to dynamic games with shared constraints. Math Program Ser A, 2014, 146, 379- 408
doi: 10.1007/s10107-013-0689-1 |
10 |
Chen Y Q , O'Regan D , Agarwal R P . Anti-periodic solutions for evolution equations associated with monotone type mappings. Appl Math Lett, 2010, 23 (11): 1320- 1325
doi: 10.1016/j.aml.2010.06.022 |
11 | Deimling K . Multivalued Differential Equations. Berlin: De Gruyter, 1992 |
12 |
Fan K . Some properties of convex sets related to fixed point theorems. Math Ann, 1984, 266, 519- 537
doi: 10.1007/BF01458545 |
13 |
Friesz T L , Bernstein D , Suo Z , Tobin R . Dynamic network user equilibrium with state-dependent time lags. Networks and Spatial Economics, 2001, 1 (3/4): 319- 347
doi: 10.1023/A:1012896228490 |
14 |
Friesz T L , Rigdon M A , Mookherjee R . Differential variational inequalities and shipper dynamic oligopolistic network competition. Transportation Research Part B, 2006, 40, 480- 503
doi: 10.1016/j.trb.2005.07.002 |
15 |
Fryszkowski A . Continuous selections for a class of nonconvex multivalued maps. Studia Math, 1983, 76, 163- 174
doi: 10.4064/sm-76-2-163-174 |
16 |
Himmelberg C J . Measurable relations. Fund Math, 1975, 87, 53- 72
doi: 10.4064/fm-87-1-53-72 |
17 | Hu S , Papageorgiou N S . Handbook of Multivalued Analysis, Volume I: Theory. New York: Springer, 1997 |
18 | Kamemskii M , Obukhovskii V , Zecca P . Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Space. Berlin: Water de Gruyter, 2001 |
19 |
Ke T D , Loi N V , Obukhovskii V . Decay solutions for a class of fractional differential variational inequalities. Fract Calc Appl Anal, 2015, 18, 531- 553
doi: 10.1515/fca-2015-0033 |
20 |
Li X S , Huang N J , Donal O R . A class of impulsive differential variational inequalities in finite dimensional spaces. J Franklin Inst, 2016, 353 (13): 3151- 3175
doi: 10.1016/j.jfranklin.2016.06.011 |
21 | Liu X Y , Liu Z H . On the "bang-bang" principle for a class of fractional semilinear evolution inclusions. Proc Royal Soc Edinburgh, 2014, 44 (2): 333- 349 |
22 |
Liu X Y , Liu Z H , Fu X . Relaxation in nonconvex optimal control problems described by fractional differential equations. J Math Anal Appl, 2014, 409 (1): 446- 458
doi: 10.1016/j.jmaa.2013.07.032 |
23 |
Liu Z H , Bin M J , Liu X Y . On the "bang-bang" principle for a class of Riemann-Liouville fractional semilinear evolution inclusions. Mathematica Slovaca, 2016, 66 (6): 1329- 1344
doi: 10.1515/ms-2016-0226 |
24 |
Lightbourne J H , Rankin S M . A partial functional differential equation of Sobolev type. J Math Anal Appl, 1983, 93, 328- 337
doi: 10.1016/0022-247X(83)90178-6 |
25 |
Liu Z H , Migórski S , Zeng S D . Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces. J Differ Equ, 2017, 263 (7): 3989- 4006
doi: 10.1016/j.jde.2017.05.010 |
26 | Liu Z H , Zeng S D . Differential variational inequalities in infinite Banach spaces. Acta Math Sci, 2017, 37B (1): 26- 32 |
27 |
Liu Z H , Zeng S D . Penalty method for a class of differential variational inequalities. Applicable Analysis, 2021, 100 (7): 1574- 1589
doi: 10.1080/00036811.2019.1652736 |
28 |
Liu Z H , Zeng S D , Motreanu D . Evolutionary problems driven by variational inequalities. J Diff Equ, 2016, 260, 6787- 6799
doi: 10.1016/j.jde.2016.01.012 |
29 |
Lu L , Liu Z H , Jiang W , Luo J . Solvability and optimal controls for semilinear fractional evolution hemivariational inequalities. Math Methods Appl Sci, 2016, 39, 5452- 5464
doi: 10.1002/mma.3930 |
30 |
Lu L , Liu Z H , Obukhovskii V . Second order differential variational inequalities involving anti-periodic boundary value conditions. Journal of Mathematical Analysis and Applications, 2019, 473 (2): 846- 865
doi: 10.1016/j.jmaa.2018.12.072 |
31 |
Melanz D , Jayakumar P , Negrut D . Experimental validation of a differential variational inequality-based approach for handling friction and contact in vehicle/granular-terrain interactio. J Terramechanics, 2016, 65, 1- 13
doi: 10.1016/j.jterra.2016.01.004 |
32 | Migórski S , Ochal A , Sofonea M . Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. New York: Springer, 2013 |
33 |
Pang J S , Stewart D E . Differential variational inequalities. Math Program, 2008, 113, 345- 424
doi: 10.1007/s10107-006-0052-x |
34 |
Papageorgiou N S . On the "bang-bang" principle for nonlinear evolution inclusions. Aequationes Math, 1993, 45, 267- 280
doi: 10.1007/BF01855884 |
35 | Pazy A . Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983 |
36 | Royden H L . Real Analysis. New Jersey: Prentice-Hall, Englewood Cliffs, 1988 |
37 | Suslov S I . Nonlinear bang-bang principle in Rn. Mat Zametki, 1991, 49 (5): 110- 116 |
38 | Tolstonogov A A . Extremal selections of multivalued mappings and the "bang-bang" principle for evolution inclusions. Dokl Akad Nauk SSSR, 1991, 317, 589- 593 |
39 |
Tolstonogov A A . Relaxation in non-convex control problems described by first-order evolution equations. Math Sb, 1999, 190 (11): 135- 160
doi: 10.4213/sm441 |
40 |
Tolstonogov A A . Properties of the set of admissible "state-control" pairs for first-order evolution control systems. Izvestiya: Math, 2001, 65 (3): 617- 640
doi: 10.1070/IM2001v065n03ABEH000343 |
41 |
Tolstonogov A A . Relaxation in nonconvex optimal control problems with subdifferential operators. J Math Sci, 2007, 140 (6): 850- 872
doi: 10.1007/s10958-007-0021-9 |
42 |
Tolstonogov A A . Relaxation in control systems of subdifferential type. Izvestiya Math, 2006, 70 (1): 121- 152
doi: 10.1070/IM2006v070n01ABEH002306 |
43 |
Tolstonogov A A , Tolstonogov D A . On the "bang-bang" principle for nonlinear evolution inclusions. Nonlinear Differ Equa Appl, 1999, 6, 101- 118
doi: 10.1007/s000300050067 |
44 |
Tolstonogov A A , Tolstonogov D A . Lp-continuous extreme selectors of multifunctions with decomposable values: Existence theorems. Set-Valued Anal, 1996, 4, 173- 203
doi: 10.1007/BF00425964 |
45 |
Tolstonogov A A , Tolstonogov D A . Lp-continuous extreme selectors of multifunctions with decomposable values: Relaxation theorems. Set-Valued Anal, 1996, 4, 237- 269
doi: 10.1007/BF00419367 |
46 | Zeidler E. . Nonlinear Functional Analysisand Its Applications. Ⅱ/B: Nonlinear Monotone Operators. Berlin: Springer-Verlag, 1990 |
47 |
Zhu Q J . On the solution set of differential inclusions in Banach space. J Differ Equ, 1991, 93 (2): 213- 237
doi: 10.1016/0022-0396(91)90011-W |
[1] | 朴勇杰. 拓扑空间上不动点和具有上下界的变分不等式[J]. 数学物理学报, 2012, 32(2): 364-372. |
[2] | 朴勇杰. 广义凸空间上截口定理及其对变分不等式的应用[J]. 数学物理学报, 2011, 31(4): 1036-1044. |
|