数学物理学报 ›› 2022, Vol. 42 ›› Issue (4): 1041-1059.

• 论文 • 上一篇    下一篇

卡门涡街的去奇异化

范伯全()   

  1. 广州大学数学与信息科学学院 广州 510006
  • 收稿日期:2021-08-12 出版日期:2022-08-26 发布日期:2022-08-08
  • 作者简介:范伯全, E-mail: 2225409634@qq.com
  • 基金资助:
    国家自然科学基金(11831009)

Desingularization of Karman Vortex Street

Boquan Fan()   

  1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006
  • Received:2021-08-12 Online:2022-08-26 Published:2022-08-08
  • Supported by:
    the NSFC(11831009)

摘要:

卡门涡街是二维不可压缩欧拉方程的一种周期行波解, 该文利用涡方法研究卡门涡街的存在性. 该文利用变分方法构造一族卡门涡街型的涡补丁解, 并对该族解的渐近行为进行了分析. 在涡强参数趋向正无穷时, 该族解构成了涡街型点涡对的一个去奇异化.

关键词: 卡门涡街, 不可压缩欧拉方程, 涡方法

Abstract:

Karman vortex street is a kind of periodic traveling wave solution. In this paper, the vortex method is used to study the existence of Karman vortex street for two-dimensional incompressible Euler equation. We construct a family of Karman vortex street type vortex patch solutions by using the variational method, and analyze the asymptotic behavior of the family of solutions. When the vortex strength parameters tend to infinity, the family of solutions constitute a desingularization of vortex street type point vortex pairs.

Key words: Karman vortex street, Incompressible Euler equation, Vortex mathod

中图分类号: 

  • O175.2