[1] |
Barcilon V, Chen D P, Eisenberg R S, Jerome J. Qualitative properties of steady-state Poisson-Nernst-Planck systems:perturbation and simulation study. SIAM J Appl Math, 1997, 57:631-648
|
[2] |
Biler P, Dolbeault J. Long Time Behavior of Solutions to Nernst-Planck and Debye-Hückel Drift-Diffusion Systems. Annales Henri Poincaré, 2000, 1:461-472
|
[3] |
Biler P, Hebisch W, Nadzieja T. The Debye system:existence and large time behavior of solutions. Nonlinear Anal, 1994, 23:1189-1209
|
[4] |
Bazant M Z, Thornton K, Ajdari A. Diffuse-charge dynamics in electrochemical systems. Physical review E, 2004, 70:021,506
|
[5] |
Cesare P, Moriondo A, Vellani V, McNaughton P A. Ion channels gated by heat. Proc Natl Acad Sci USA, 1999, 96:7658-7663
|
[6] |
Deng C, Li C M. Endpoint bilinear estimates and applications to the two-dimensional Poisson-Nernst-Planck system. Nonlinearity, 2013, 26:2993-3009
|
[7] |
Duan R J, Ruan L Z, Zhu C J. Optimal decay rates to conservation laws with diffusion-type terms of regularity-gain and regularity-loss. Math Models Methods Appl Sci, 2012, 22:1250012 39 pp
|
[8] |
Eisenberg R S. Computing the field in proteins and channels. J Membrane Biol, 1996, 150:1-25
|
[9] |
Eisenberg R S. From structure to function in open ionic channels. J Membrane Biol, 1999, 171:1-24
|
[10] |
Elad D, Gavish N. Finite domain effects in steady state solutions of Poisson-Nernst-Planck equations. SIAM J Appl Math, 2019, 79:1030-1050
|
[11] |
Eisenberg B, Liu W S. Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J Math Anal, 2007, 38:1932-1966
|
[12] |
Gajewski H. On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z Angew Math Mech, 1985, 65:101-108
|
[13] |
Gagneux G, Millet O. A survey on properties of Nernst-Planck-Poisson system. Application to ionic transport in porous media. Appl Math Model, 2016, 40:846-858
|
[14] |
Guo Y, Wang Y J. Decay of dissipative equations and negative Sobolev spaces. Commun Part Diff Equ, 2012, 37:2165-2208
|
[15] |
Hsieh C Y. Global existence of solutions for the Poisson-Nernst-Planck system with steric effects. Nonlinear Anal Real World Appl, 2019, 50:34-54
|
[16] |
Hsieh C Y, Lin T C. Exponential decay estimates for the stability of boundary layer solutions to poisson-nernst-planck systems:One spatial dimension case. SIAM J Appl Math, 2015, 47:3442-3465
|
[17] |
Hsieh C Y, Lin T C, Liu C, Liu P. Global existence of the non-isothermal Poisson-Nernst-Planck-Fourier system. J Differential Equations, 2020, 269:7287-7310
|
[18] |
Jerome J W. Analysis of charge transport. A mathematical study of semiconductor devices. Berlin:Springer-Verlag, 1996
|
[19] |
Jordan P C, Bacquet R J, McCammon J A, Tran P. How electrolyte shielding influences the electrical potential in transmembrane ion channels. Biophysical Journal, 1989, 55:1041-1052
|
[20] |
Ji L J, Liu P, Xu Z L, Zhou S G. Asymptotic analysis on dielectric boundary effects of modified Poisson-Nernst-Planck equations. SIAM J Appl Math, 2018, 78:1802-1822
|
[21] |
Jiang N, Luo Y L, Zhang X. Long time stability of admissible equilibria in Poisson-Nernst-Planck-Fourier system. arXiv:1910.04094
|
[22] |
Liu W S. Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J Appl Math, 2005, 65:754-766
|
[23] |
Lin T C, Eisenberg B. A new approach to the lennard-jones potential and a new model:Pnp-steric equations. Commun Math Sci, 2014, 12:149-173
|
[24] |
Lin T C, Eisenberg B. Multiple solutions of steady-state Poisson-Nernst-Planck equations with steric effects. Nonlinearity, 2015, 28:2053-2080
|
[25] |
Liu P, Wu S, Liu C. Non-isothermal electrokinetics:energetic variational approach. Commun Math Sci, 2018, 16:1451-1463
|
[26] |
Liu W S, Xu H G. A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow. J Differential Equations, 2015, 258:1192-1228
|
[27] |
Mock M S. An initial value problem from semiconductor device theory. SIAM J Math Anal, 1974, 5:597-612
|
[28] |
Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:67-104
|
[29] |
Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor equations. Vienna:Springer-Verlag, 1990
|
[30] |
Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa Cl Sci, 1959, 13:115-162
|
[31] |
Nonner W, Chen D P, Eisenberg B. Progress and prospects in permeation. J Gen Physiol, 1999, 113:773-782
|
[32] |
Ogawa T, Shimizu S. The drift-diffusion system in two-dimensional critical Hardy space. J Funct Anal, 2008, 255:1107-1138
|
[33] |
Park J H, Jerome J W. Qualitative properties of steady-state Poisson-Nernst-Planck systems:Mathematical study. SIAM J Appl Math, 1997, 57:609-630
|
[34] |
Promislow K, Stockie J M. Adiabatic relaxation of convective-diffusive gas transport in a porous fuel cell electrode. SIAM J Appl Math, 2001, 62:180-205
|
[35] |
Reubish D S, Emerling D E, DeFalco J, Steiger D, Victoria C L, Vincent F. Functional assessment of temperature-gated ion-channel activity using a real-time PCR machine. BioTechniques, 2009, 47:iii-ix. PMID:19852757
|
[36] |
Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. No 30. Princeton, NJ:Princeton University Press, 1970
|
[37] |
Sohr H. The Navier-Stokes equations. Birkhäuser Advanced Texts:Basler Lehrbücher. Basel:Birkhäuser Verlag, 2001
|
[38] |
Song Z L, Cao X L, Huang H X. Electroneutral models for a multidimensional dynamic Poisson-Nernst-Planck system. Phys Rev E, 2018, 98:032404
|
[39] |
Schoch R B, Han J, Renaud P. Transport phenomena in nanofluidics. Rev Mod Phys, 2008, 80:839
|
[40] |
Schuss Z, Nadler B, Eisenberg R S. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys Rev E, 2001, 64:036116
|
[41] |
Wu Y S, Tan Z. Asymptotic behavior of the Stokes approximation equations for compressible flows in R3. Acta Mathematica Scientia, 2015, 35B(3):746-760
|
[42] |
Zhang Y H, Wu G C. Global existence and asymptotic behavior for the 3D compressible non-isentropic Euler equations with damping. Acta Mathematica Scientia, 2014, 34B(2):424-434
|