Existence of Positive Ground State Solutions for a Class of Kirchhoff Type Problems with Critical Exponent
Lei Ji1(),Jiafeng Liao2,*()
1 Department of Mathematics, Jingzhong University, Shanxi Jingzhong 030600 2 College of Mathematics Education, China West Normal University, Sichuan Nanchong 637002
the Scientific Research Fund of Sichuan Provincial Education Department(18ZA0471);the Fundamental Research Funds of China West Normal University(18B015);the Innovative Research Team of China West Normal University(CXTD2018-8)
Lei Ji,Jiafeng Liao. Existence of Positive Ground State Solutions for a Class of Kirchhoff Type Problems with Critical Exponent[J]. Acta mathematica scientia,Series A, 2022, 42(2): 418-426.
Zeng L , Tang C L . Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent. Ann Polon Math, 2016, 117 (1): 163- 180
2
Alves C O , Corr$\hat{\mathrm{e}}$a F J S A , Figueiredo G M . On a class of nonlocal elliptic problems with critical growth. Differ Equ Appl, 2010, 23 (3): 409- 417
3
Figueiredo G M . Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J Math Anal Appl, 2013, 401 (2): 706- 713
doi: 10.1016/j.jmaa.2012.12.053
4
Naimen D . Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent. NoDEA Nonl Diff Equa Appl, 2014, 21 (6): 885- 914
doi: 10.1007/s00030-014-0271-4
5
Br$\acute{\mathrm{e}}$zis H , Nirenberg L . Positive solutions of nonlinear elliptic equations involving critical exponents. Comm Pure Appl Math, 1983, 36 (4): 437- 477
doi: 10.1002/cpa.3160360405
6
Liu X , Sun Y J . Existence of positive solutions for Kirchhoff type problems with critical exponent. J Part Diff Equa, 2012, 25 (2): 85- 96
7
Xie Q L , Wu X P , Tang C L . Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Commun Pure Appl Anal, 2013, 12 (6): 2773- 2786
doi: 10.3934/cpaa.2013.12.2773
Liao J F , Li H Y . Existence and multiplicity of positive solutions for the superlinear Kirchhoff-type equations with critical Sobolev exponent. Acta Mathematica Scientia, 2017, 37A (6): 1119- 1124
doi: 10.3969/j.issn.1003-3998.2017.06.011
9
Huang Y S , Liu Z , Wu Y Z . On Kirchhoff type equations with critical Sobolev exponent. J Math Anal Appl, 2018, 462 (1): 483- 503
doi: 10.1016/j.jmaa.2018.02.023
10
Liao J F , Li H Y , Zhang P . Existence and multiplicity of solutions for a nonlocal problem with critical Sobolev exponent. Comput Math Appl, 2018, 75 (3): 787- 797
doi: 10.1016/j.camwa.2017.10.012
Ji L , Liao J F . Existence of the second positive solution for a class of nonhomogeneous Kirchhoff type problems with critical exponent. Acta Math Sci, 2019, 39A (5): 1094- 1101
doi: 10.3969/j.issn.1003-3998.2019.05.012
12
Naimen D , Shibata K . Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension. Nonlinear Anal, 2019, 186: 187- 208
doi: 10.1016/j.na.2019.02.003
13
Willem M. Minimax Theorems. Boston: Birkhauser, 1996
14
Ambrosetti A , Rabinowitz P H . Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349- 381
doi: 10.1016/0022-1236(73)90051-7
15
Lei C Y , Suo H M , Chu C M , Guo L T . On ground state solutions for a Kirchhoff type equation with critical growth. Comput Math Appl, 2016, 72 (3): 729- 740
doi: 10.1016/j.camwa.2016.05.027