数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 45-57.
收稿日期:
2019-08-16
出版日期:
2022-02-01
发布日期:
2022-02-23
作者简介:
张宏武, E-mail: 基金资助:
Received:
2019-08-16
Online:
2022-02-01
Published:
2022-02-23
Supported by:
摘要:
构造并利用一种广义分数Tikhonov正则化方法研究一类半线性椭圆方程柯西问题.基于所构造的正则化解满足一个非线性积分方程,首先证明正则化解的存在唯一性和稳定性; 继而在对精确解的先验假设下给出并证明正则化方法的收敛性; 最后设计一种迭代算法计算正则化解,并通过相应的计算结果验证了所提方法的稳定可行性.
中图分类号:
张宏武. 一类半线性椭圆方程柯西问题的正则化方法[J]. 数学物理学报, 2022, 42(1): 45-57.
Hongwu Zhang. One Regularization Method for a Cauchy Problem of Semilinear Elliptic Equation[J]. Acta mathematica scientia,Series A, 2022, 42(1): 45-57.
1 |
Beskos D E . Boundary element method in dynamic analysis: Part Ⅱ (1986-1996). ASME Appl Mech Rev, 1997, 50: 149- 197
doi: 10.1115/1.3101695 |
2 |
Chen J T , Wong F C . Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition. J Sound Vib, 1998, 217: 75- 95
doi: 10.1006/jsvi.1998.1743 |
3 |
Fokas A S , Pelloni B . The dirichlet-to-neumann map for the elliptic Sine-Gordon equation. Nonlinearity, 2012, 25 (4): 1011- 1031
doi: 10.1088/0951-7715/25/4/1011 |
4 |
Gutshabash E S , Lipovskii V D . Boundary value problem for the two-dimensional elliptic Sine-Gordon equation and its applications to the theory of the stationary josephson effect. J Math Sciences, 1994, 68: 197- 201
doi: 10.1007/BF01249332 |
5 |
Belgacem F B . Why is the Cauchy problem severely ill-posed?. Inverse Problems, 2007, 23 (2): 823
doi: 10.1088/0266-5611/23/2/020 |
6 |
Feng X L , Ning W T , Qian Z . A quasi-boundary-value method for a Cauchy problem of an elliptic equation in multiple dimensions. Inverse Problems in Science and Engineering, 2014, 22 (7): 1045- 1061
doi: 10.1080/17415977.2013.850683 |
7 |
Hào D N , Duc D V , Lesnic D . A non-local boundary value problem method for the Cauchy problem for elliptic equations. Inverse Problems, 2009, 25: 055002
doi: 10.1088/0266-5611/25/5/055002 |
8 | Lavrentiev M M, Romanov V G, Shishatski S P. Ill-Posed Problems of Mathematical Physics and Analysis. Providence, RI: American Mathematical Society, 1986 |
9 | Tautenhahn U . Optimal stable solution of Cauchy problems of elliptic equations. Journal for Analysis and its Applications, 1996, 15 (4): 961- 984 |
10 |
Tuan N H , Trong D D , Quan P H . A note on a Cauchy problem for the Laplace equation: Regularization and error estimates. Applied Mathematics and Computation, 2010, 217: 2913- 2922
doi: 10.1016/j.amc.2010.09.019 |
11 |
Zhang H W , Zhang X J . Generalized-fractional Tikhonov-type method for the Cauchy problem of elliptic equation. Mathematics, 2020, 8 (1): 48
doi: 10.3390/math8010048 |
12 |
Tuan N H , Thang L D , Khoa V A . A modified integral equation method of the nonlinear elliptic equation with globally and locally lipschitz source. Applied Mathematics and Computation, 2015, 265: 245- 265
doi: 10.1016/j.amc.2015.03.115 |
13 |
Tuan N H , Thang L D , Khoa V A , Tran T . On an inverse boundary value problem of a nonlinear elliptic equation in three dimensions. Journal of Mathematical Analysis and Applications, 2015, 426: 1232- 1261
doi: 10.1016/j.jmaa.2014.12.047 |
14 | Zhang H W , Wei T . A Fourier truncated regularization method for a Cauchy problem of a semi-linear elliptic equation. Journal of Inverse and Ill-posed Problems, 2014, 22 (2): 143- 168 |
15 |
Tran Q V , Kirane M , Nguyen H T , Nguyen V T . Analysis and numerical simulation of the three dimensional Cauchy problem for quasi-linear elliptic equations. J Math Anal Appl, 2017, 446 (1): 470- 492
doi: 10.1016/j.jmaa.2016.08.045 |
16 |
Tuan N H , Thang L D , Lesnic D . A new general filter regularization method for Cauchy problems for elliptic equations with a locally lipschitz nonlinear source. J Math Anal Appl, 2016, 434: 1376- 1393
doi: 10.1016/j.jmaa.2015.09.085 |
17 |
Tuan N H , Thang L D , Trong D D , Khoa V A . Approximation of mild solutions of the linear and nonlinear elliptic equations. Inverse Problems in Science and Engineering, 2015, 23 (7): 1237- 1266
doi: 10.1080/17415977.2014.993983 |
18 | Khoa V A , Truong M T , Duy N H . A general kernel-based regularization method for coupled elliptic Sine-Gordon equations with Gevrey regularity. Computer Physics Communications, 2015, 183 (8): 1813- 1821 |
19 |
Khoa V A , Truong M T , Duy N H , Tuan N H . The Cauchy problem of coupled elliptic Sine-Gordon equations with noise: Analysis of a general kernel-based regularization and reliable tools of computing. Computers and Mathematics with Applications, 2017, 73 (1): 141- 162
doi: 10.1016/j.camwa.2016.11.001 |
20 |
Zhang H W , Wang R H . Modified boundary Tikhonov-type regularization method for the Cauchy problem of a semi-linear elliptic equation. Inverse Problems in Science and Engineering, 2016, 24 (7): 1249- 1265
doi: 10.1080/17415977.2016.1172222 |
21 |
Zhang H W , Zhang X J . Generalized Tikhonov-type regularization method for the Cauchy problem of a semi-linear elliptic equation. Numerical Algorithms, 2019, 81: 833- 851
doi: 10.1007/s11075-018-0573-4 |
22 |
Zhang H W , Zhang X J . Generalized Lavrentiev-type regularization method for the Cauchy problem of a semi-linear elliptic equation. Inverse Problems in Science and Engineering, 2019, 27 (8): 1120- 1144
doi: 10.1080/17415977.2018.1494168 |
23 |
Hochstenbach M E , Reichel L . Fractional Tikhonov regularization for linear discrete ill-posed problems. BIT Numer Math, 2011, 51: 197- 215
doi: 10.1007/s10543-011-0313-9 |
24 |
Eldén L , Simoncini V . A numerical solution of a Cauchy problem for an elliptic equation by krylov subspaces. Inverse Problems, 2009, 25: 065002
doi: 10.1088/0266-5611/25/6/065002 |
25 | Engl H W , Hanke M , Neubauer A . Regularization of Inverse Problems. Dordrecht: Kluwer Academic Publishers, 1996 |
26 | Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996 |
27 | Evans L C. Partial Diferential Equations. Providence, RI: Amer Math Soc, 1998 |
28 |
Doan V N , Nguyen H T , Khoa V A , Vo V A . A note on the derivation of filter regularization operators for nonlinear evolution equations. Applicable Analysis, 2018, 97 (1): 3- 12
doi: 10.1080/00036811.2016.1276176 |
29 |
Qian Z , Feng X L . A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation. Applicable Analysis, 2017, 96: 1- 13
doi: 10.1080/00036811.2016.1246129 |
30 |
Qin H H , Lu J M . A modified method for a Cauchy problem of the Helmholtz equation. Bull Malays Math Sci Soc, 2017, 40: 1493- 1522
doi: 10.1007/s40840-015-0148-7 |
[1] | 孟庆春,张磊. 一类三维逆时热传导问题的数值求解[J]. 数学物理学报, 2022, 42(1): 187-200. |
[2] | 储昌木,蒙璐. 一类带有变指数增长的半线性椭圆方程正解的存在性[J]. 数学物理学报, 2021, 41(6): 1779-1790. |
[3] | 杨帆,王乾朝,李晓晓. 识别Rayleigh-Stokes方程源项的分数阶Landweber迭代正则化方法[J]. 数学物理学报, 2021, 41(2): 427-450. |
[4] | 郑立飞,郭洁,吴美华,王小瑞,万阿英. 一类具有时滞的捕食者-猎物-共生者系统的研究[J]. 数学物理学报, 2018, 38(5): 1001-1013. |
[5] | 王丽. 超音速流越过弯曲坡面的反问题[J]. 数学物理学报, 2018, 38(4): 679-686. |
[6] | 谢瓯, 孟泽红, 赵振宇, 由雷. 求解拉普拉斯方程柯西问题的截断赫尔米特展开方法[J]. 数学物理学报, 2017, 37(3): 457-468. |
[7] | 邓继勤, 邓子明. 分数阶微分方程非局部柯西问题解的存在和唯一性[J]. 数学物理学报, 2016, 36(6): 1157-1164. |
[8] | 韩欢, 李星, 刘军, 倪成洲. 二维海底电缆铺设的微分方程模型与数值算法[J]. 数学物理学报, 2015, 35(4): 780-793. |
[9] | 姚宪忠, 穆春来, 张付臣. 带双参数的半线性椭圆方程正解存在与不存在性以及一个预值结论[J]. 数学物理学报, 2014, 34(5): 1144-1150. |
[10] | 舒小保, 戴斌祥. 半线性中立型分数阶微分方程S -渐近ω周期解[J]. 数学物理学报, 2014, 34(1): 16-26. |
[11] | 赵振宇, 由雷. 求解热源识别问题的修正吉洪诺夫正则化方法[J]. 数学物理学报, 2014, 34(1): 186-192. |
[12] | 徐红梅, 许盈盈. 多维空间一般Benjamin-Bona-Mahony 方程解的逐点估计[J]. 数学物理学报, 2013, 33(6): 1112-1121. |
[13] | 安荣, 李开泰. Plate Contact问题的混合有限元逼近[J]. 数学物理学报, 2010, 30(3): 666-676. |
[14] | 康东升. 一种奇异临界椭圆方程的非平凡解[J]. 数学物理学报, 2006, 26(5): 716-720. |
[15] | 傅初黎, 邱春雨, 赵华. 求解一般抛物方程侧边值问题的Fourier正则化方法[J]. 数学物理学报, 2005, 25(6): 806-810. |
|