1 |
Subhas K , Nieto J J . Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Applied Mathematics and Computation, 2019, 340, 180- 205
doi: 10.1016/j.amc.2018.08.018
|
2 |
Kirschner D , Panetta J C . Modeling immunotherapy of the tumor-immune interaction. Journal of Mathematical Biology, 1998, 37, 235- 252
doi: 10.1007/s002850050127
|
3 |
Khajanchi S , Banerjee S . Stability and bifurcation analysis of delay induced tumor immune interaction model. Applied Mathematics and Computation, 2014, 248, 652- 671
doi: 10.1016/j.amc.2014.10.009
|
4 |
Khajanchi S , Nieto J . Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Applied Mathematics and Computation, 2019, 340, 180- 205
doi: 10.1016/j.amc.2018.08.018
|
5 |
Letellier C , Denis F , Aguirre L A . What can be learned from chaotic cancer model?. Journal of Theoretical Biology, 2013, 322, 7- 16
doi: 10.1016/j.jtbi.2013.01.003
|
6 |
Kuznetsov V A , Makalkin I A , Taylor M A , et al. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bulletin of Mathematical Biology, 1994, 56, 295- 321
doi: 10.1016/S0092-8240(05)80260-5
|
7 |
Robert D , Schreiber , Lloyd J , et al. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science, 2011, 331 (6024): 1565- 1570
doi: 10.1126/science.1203486
|
8 |
Matthew D V , Michael H K , Robert D S , et al. Natural innate and adaptive immunity to cancer. Annual Review of Immunology, 2011, 29 (1): 235- 71
doi: 10.1146/annurev-immunol-031210-101324
|
9 |
Araujo R P , McElwain D . A history of the study of solid tumour growth: The contribution of mathematical modelling. Bull Math Biol, 2004, 66, 1039- 1091
doi: 10.1016/j.bulm.2003.11.002
|
10 |
黄佩, 蔺小林, 李建全, 等. 一类肿瘤-免疫系统动力学性态的全局分析. 高校应用数学学报A辑, 2019, 34 (2): 181- 189
|
|
Huang P , Lin X L , Li J Q , et al. Global analysis of a kind of tumor-immune system dynamics. Journal of Applied Mathematics Series A, 2019, 34 (2): 181- 189
|
11 |
陶有山, 边保军. 抑制剂作用下肿瘤生长模型的参数识别. 数学物理学报, 2009, 29 (5): 1175- 1186
|
|
Tao Y S , Bian B J . Parameter identification of tumor growth model under the action of inhibitor. Acta Math Sci, 2009, 29 (5): 1175- 1186
|
12 |
卫雪梅, 崔尚斌. 一个肿瘤生长自由边界问题解的渐近性态. 数学物理学报, 2007, 27 (4): 648- 659
|
|
Wei X M , Cui S B . The Asymptotic behavior of the solution of a tumor growth free boundary problem. Acta Math Sci, 2007, 27 (4): 648- 659
|
13 |
Adam J A , Bellomo N . A Survey of models for tumor-immune system dynamics. Modeling & Simulation in Science Engineering & Technology, 1996, 59 (5): 1023- 1024
|
14 |
马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法. 北京: 科学出版社, 2015
|
|
Ma Z E , Zhou Y C , Li C Z . Qualitative and Stable Methods of Ordinary Differential Equations. Beijing: Science Press, 2015
|
15 |
Adams J F . Stable Homotopy and Generalised Homology. Chicago: University of Chicago Press, 1974
|
16 |
Kirschner D , Panetta J C . Modeling immunotherapy of the tumor-immune interaction. Journal of Mathematical Biology, 1998, 37 (3): 235- 252
doi: 10.1007/s002850050127
|
17 |
Bodnar M , Piotrowska M J , Urszula Foryś , et al. Model of tumour angiogenesis-analysis of stability with respect to delays. Mathematical Bioences and Engineering, 2013, 10 (1): 19- 35
|
18 |
Pillis L D , Fister K R , Gu W , et al. Mathematical model creation for cancer chemo-immunotherapy. Computational and Mathematical Methods in Medicine, 2009, 10 (3): 165- 184
doi: 10.1080/17486700802216301
|
19 |
Chaplain M, Matzavinos A. Mathematical Modelling of Spatio-Temporal Phenomena in Tumour Immunology. Berlin: Springer, 2006
|
20 |
Galach M . Dynamics of the tumor-immune system competition: the effect of time delay. Applied Mathematics and Computer Science, 2003, 13, 395- 406
|