1 |
王林, 黄亚明. National institute of diabetes and digestive and kidney diseases. 中华内科杂志, 2010, (8): 695- 695
|
|
Wang L , Huang Y M . National institute of diabetes and digestive and kidney diseases. Chinese Journal of Internal Medicine, 2010, (8): 695- 695
|
2 |
Tfayli H , Arslanian S . Pathophysiology of type 2 in youth: the evolving chameleon. Arq Bras Endocrinol, 2009, 53 (2): 165- 174
doi: 10.1590/S0004-27302009000200008
|
3 |
Bolie V W . Coefficients of normal blood glucose regulation. J Appl Physiol, 1961, 16 (5): 783- 790
doi: 10.1152/jappl.1961.16.5.783
|
4 |
Ackerman E , Rosevear J W , Mcguckin W F . A mathematical model of the glucose-tolerance test. Phys Med Biol, 1964, 9 (2): 203- 213
doi: 10.1088/0031-9155/9/2/307
|
5 |
Ackerman E , Gatewood L C , Rosevear J W , et al. Model studies of blood-glucose regulation. Bull Math Biophys, 1965, 27 (1): 21- 37
doi: 10.1007/BF02476465
|
6 |
Sulston K W , Ireland W P , Praught J C . Hormonal effects on glucose regulation. Atl Electron J Math, 2006, 1 (1): 31- 46
|
7 |
Divanovi H, Muli D, Padalo A, et al. Effects of electrical stimulation as a new method of treating diabetes on animal models: Review// Badnjevic A, et al. CMBEBIH. Singapore: Springer, 2017: 253-258
|
8 |
Wang H , Li J , Yang K . Mathematical modeling and qualitative analysis of insulin therapies. Math Biosci, 2007, 210 (1): 17- 33
doi: 10.1016/j.mbs.2007.05.008
|
9 |
Li J , Kuang Y . Analysis of a model of the glucose-insulin regulatory system with two delays. Siam J Appl Math, 2007, 67 (3): 757- 776
doi: 10.1137/050634001
|
10 |
Topp B , Promislow K , Devries G , et al. A Model of β-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Bio, 2000, 206 (4): 605- 619
doi: 10.1006/jtbi.2000.2150
|
11 |
Hernandez R D, Lyles D J, Rubin D B, et al. A model of β-cell mass, insulin, glucose and receptor dynamics with applications to diabetes[R]. Technical Report, Biometric Department, MTBI Cornell University, 2001
|
12 |
Gallenberger M , Castell WZ . Dynamics of glucose and insulin concentration connected to the β-cell cycle: model development and analysis. Theor Biol Med Model, 2012, 9 (1): 46- 46
doi: 10.1186/1742-4682-9-46
|
13 |
Bellazzi R , Nucci G , Cobelli C . The subcutaneous route to insulin-dependent diabetes therapy. IEEE Eng Med Biol, 2001, 20 (1): 54- 64
doi: 10.1109/51.897828
|
14 |
Boutayeb A , Chetouani A . A critical review of mathematical models and data used in diabetology. BioMed Eng OnLine, 2006, 5 (1): 43
doi: 10.1186/1475-925X-5-43
|
15 |
Kansal A R . Modeling approaches to type 2 diabetes. Diabetes Technol The, 2004, 6 (1): 39- 47
doi: 10.1089/152091504322783396
|
16 |
Landersdorfer C , Jusko W . Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet, 2008, 47 (7): 417- 448
doi: 10.2165/00003088-200847070-00001
|
17 |
Makroglou A , Li J , Yang K . Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl Numer Math, 2006, 56 (3/4): 559- 573
|
18 |
Parker R S , Doyle F , Peppas N A . The intravenous route to blood glucose control. IEEE Eng Med Biol, 2001, 20 (1): 65- 73
doi: 10.1109/51.897829
|
19 |
Pattaranit R , Berg H . Mathematical models of energy homeostasis. J R Soc Interface, 2008, 5 (27): 1119- 1153
doi: 10.1098/rsif.2008.0216
|
20 |
Li J , Yang K , Mason C C . Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J Theor Biol, 2006, 242 (3): 722- 735
doi: 10.1016/j.jtbi.2006.04.002
|
21 |
Huang M , Li J , Song X , et al. Modeling impulsive injections of insulin: towards artificial pancreas. SIAM J Appl Math, 2012, 72 (5): 1524- 1548
doi: 10.1137/110860306
|
22 |
Liu L , Wang F , Lu H , et al. Effects of noise exposure on systemic and tissue-level markers of glucose homeostasis and insulin resistance in male mice. Environ Health Perspect, 2016, 124, 1390- 1398
doi: 10.1289/EHP162
|
23 |
Yu X , Yuan S , Zhang T . The effects of toxin-producing phytoplankton and environmental fluctuations on the planktonic blooms. Nonlinear Dyn, 2018, 91, 1653- 1668
doi: 10.1007/s11071-017-3971-6
|
24 |
Nguyen D , Yin G , Zhu C . Long-term analysis of a stochastic SIRS model with general incidence rates. Siam J Appl Math, 2020, 80 (2): 814- 838
doi: 10.1137/19M1246973
|
25 |
Liu M , Fan M . Permanence of stochastic lotka-volterra systems. J Nonl Sci, 2017, 27 (2): 425- 452
doi: 10.1007/s00332-016-9337-2
|
26 |
Khas'Miniskii R. Stochastic Stability of Differential Equations. Alphen aan den Rijn: Sijthoff and Noordhoff, 1980
|
27 |
Higham Desmond J . An algorithmic introduction to numerical simulations of stochastic differentila equations. Siam Rev, 2001, 43, 525- 546
doi: 10.1137/S0036144500378302
|
28 |
Liu M , Bai C . Optimal harvesting of a stochastic mutualism model with regime-switching. Appl Math Comput, 2020, 373, 125040
|
29 |
Ji W , Wang Z , Hu G . Stationary distribution of a stochastic hybrid phytoplankton model with allelopathy. Adv Differ Equ, 2020, 2020, 632
doi: 10.1186/s13662-020-03088-9
|
30 |
Wang Z , Deng M , Liu M . Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching. Chaos Solitons Fract, 2020, 2020, 110462
|
31 |
Yu X , Yuan S , Zhang T . Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching. Commun Nonlinear Sci, 2018, 59, 359- 374
doi: 10.1016/j.cnsns.2017.11.028
|
32 |
Zhao Y , Yuan S , Zhang T . The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching. Commun Nonlinear Sci, 2016, 37, 131- 142
doi: 10.1016/j.cnsns.2016.01.013
|
33 |
Xu C , Yuan S , Zhang T . Average break-even concentration in a simple chemostat model with telegraph noise. Nonlinear Anal Hybr, 2018, 29, 373- 382
doi: 10.1016/j.nahs.2018.03.007
|
34 |
Lan G , Lin Z , Wei C , et al. A stochastic SIRS epidemic model with non-monotone incidence rate under regime-switching. J Franklin Inst, 2019, 356 (16): 9844- 9866
doi: 10.1016/j.jfranklin.2019.09.009
|
35 |
Zhao D , Liu H . Coexistence in a two species chemostat model with Markov switchings. Appl Math Lett, 2019, 94, 266- 271
doi: 10.1016/j.aml.2019.03.005
|