1 |
Zhang F , Yang J H , Dai K , et al. Characterization of microbial compositions in a thermophilic chemostat of mixed culture fermentation. Appl Microbiol Biot, 2016, 100 (3): 1511- 1521
doi: 10.1007/s00253-015-7130-z
|
2 |
Tang Y Q , Shigematsu T , Morimura S , Kida K . Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors. J Biosci Bioeng, 2015, 119 (4): 375- 383
doi: 10.1016/j.jbiosc.2014.09.014
|
3 |
Karafyllis I, Malisoff M, Krstic M. Ergodic theorem for stabilization of a hyperbolic PDE inspired by age-structured chemostat. 2015, arXiv: 1501.04321
|
4 |
Payen C , Dunham M J . Chemostat culture for yeast experimental evolution. Cold Spring Harbor Protocols, 2017, 2017 (7)
doi: 10.1101/pdb.prot089011
|
5 |
Chi M , Zhao W . Dynamical analysis of multi-nutrient and single microorganism chemostat model in a polluted environment. Adv Differ Equ-Ny, 2018, 2018 (1): 120
doi: 10.1186/s13662-018-1573-3
|
6 |
Xu C , Yuan S , Zhang T . Average break-even concentration in a simple chemostat model with telegraph noise. Nonlinear Anal-Hybri, 2018, 29, 373- 382
doi: 10.1016/j.nahs.2018.03.007
|
7 |
Zhang T , Zhang T , Meng X . Stability analysis of a chemostat model with maintenance energy. Appl Math Lett, 2017, 68, 1- 7
doi: 10.1016/j.aml.2016.12.007
|
8 |
Zhang T , Ma W , Meng X . Global dynamics of a delayed chemostat model with harvest by impulsive flocculant input. Adv Differ Equ-Ny, 2017, 2017 (1): 115
doi: 10.1186/s13662-017-1163-9
|
9 |
Wang L , Jiang D Q , Regan D . The periodic solutions of a stochastic chemostat model with periodic washout rate. Commun Nonlinear Sci, 2016, 37, 1- 13
doi: 10.1016/j.cnsns.2016.01.002
|
10 |
Wang L , Jiang D Q . A note on the stationary distribution of the stochastic chemostat model with general response functions. Appl Math Lett, 2017, 73, 22- 28
doi: 10.1016/j.aml.2017.04.029
|
11 |
Butler G J , Wolkowicz G S K . A mathematical model of the chemostat with a general class of functions describing nutrient uptake. SIAM J Appl Math, 1985, 45, 138- 151
doi: 10.1137/0145006
|
12 |
Wolkowicz G S K , Lu Z . Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J Appl Math, 1992, 52, 222- 233
doi: 10.1137/0152012
|
13 |
Wang L , Wolkowicz G S K . A delayed chemostat model with general nonmonotone response functions and differential removal rates. J Math Anal Appl, 2006, 321 (1): 452- 468
doi: 10.1016/j.jmaa.2005.08.014
|
14 |
Zhang Q M , Jiang D Q . Competitive exclusion in a stochastic chemostat model with Holling type Ⅱ functional response. J Math Chem, 2016, 54 (3): 777- 791
doi: 10.1007/s10910-015-0589-0
|
15 |
Sun S , Chen L . Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration. J Math Chem, 2007, 42 (4): 837- 847
doi: 10.1007/s10910-006-9144-3
|
16 |
Wang L , Jiang D Q , Wolkowicz G , Regan D . Dynamics of the stochastic chemostat with Monod-Haldane response function. Sci Rep-UK, 2017, 7 (1): 13641
doi: 10.1038/s41598-017-13294-3
|
17 |
Cao Z W , Liu L Y . The threshold of stochastic chemostat model with Monod-Haldane response function. J Nonlinear Sci Appl, 2017, 10, 4364- 4371
doi: 10.22436/jnsa.010.08.29
|
18 |
He X , Ruan S , Xia H . Global stability in chemostat type equations with distributed time delays. SIAM J Math Anal, 1998, 29, 681- 696
doi: 10.1137/S0036141096311101
|
19 |
Sun S , Sun Y , Zhang G , Liu X Z . Dynamical behavior of a stochastic two-species Monod competition chemostat model. Appl Math Comput, 2017, 298, 153- 170
|
20 |
Xu C , Yuan S . An analogue of break-even concentration in a simple stochastic chemostat model. Appl Math Lett, 2015, 48, 62- 68
doi: 10.1016/j.aml.2015.03.012
|
21 |
Lv X , Meng X , Wang X . Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation. Chaos Solitons Fract, 2018, 110, 273- 279
doi: 10.1016/j.chaos.2018.03.038
|
22 |
Imhof L , Walcher S . Exclusion and persistence in deterministic and stochastic chemostat models. J Differ Equa, 2005, 217, 26- 53
doi: 10.1016/j.jde.2005.06.017
|
23 |
Garrido-Atienza M J , Lopez-de-la-Cruz J , Caraballo T . Dynamics of some stochastic chemostat models with multiplicative noise. Commun Pure Appl Anal, 2017, 16, 1893- 1914
doi: 10.3934/cpaa.2017092
|
24 |
Khasminskii R. Stochastic Stability of Differential Equations. Netherlands: Sijthoff and Noordhoff, 1980
|
25 |
Higham D J . An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev, 2001, 43 (3): 525- 546
doi: 10.1137/S0036144500378302
|
26 |
Mao X R , Yuan C . Stochastic Differential Equations with Markovian Switching. London: Imperial College Press, 2006
|
27 |
Zhu C , Yin G . Asymptotic properties of hybrid diffusion systems. SIAM J Control Optim, 2007, 46, 1155- 1179
doi: 10.1137/060649343
|
28 |
Zhao Y N , Jiang D Q . The threshold of a stochastic SIS epidemic model with vaccination. Appl Math Comput, 2014, 243, 718- 727
|