数学物理学报 ›› 2021, Vol. 41 ›› Issue (6): 1880-1896.
收稿日期:
2020-09-20
出版日期:
2021-12-26
发布日期:
2021-12-02
通讯作者:
杨晓侠
E-mail:yangxiaoxia1014@163.com
基金资助:
Received:
2020-09-20
Online:
2021-12-26
Published:
2021-12-02
Contact:
Xiaoxia Yang
E-mail:yangxiaoxia1014@163.com
Supported by:
摘要:
利用Wilson元研究了Extended Fisher-Kolmogorov(EFK)方程的间断有限元逼近格式.在不需要后处理技术的前提下,通过对非线性项采用新的分裂技术,分别得到了半离散和线性化欧拉全离散格式下原始变量
中图分类号:
杨晓侠,张厚超. Extended Fisher-Kolmogorov方程的间断有限元分析[J]. 数学物理学报, 2021, 41(6): 1880-1896.
Xiaoxia Yang,Houchao Zhang. Discontinuous Galerkin Finite Element Analysis of for the Extended Fisher-Kolmogorov Equation[J]. Acta mathematica scientia,Series A, 2021, 41(6): 1880-1896.
1 |
Coullet P , Elphick C , Repaux D . Nature of spatial chaos. Physical Review Letters, 1987, 58 (5): 431- 434
doi: 10.1103/PhysRevLett.58.431 |
2 |
Dee G T , Van Saarloos W . Bistable systems with propagating fronts leading to pattern foration. Physical Review Letters, 1988, 60 (25): 2641- 2644
doi: 10.1103/PhysRevLett.60.2641 |
3 |
Van Saarloos W . Dynamical velocity selection: marginal stability. Physical Review Letters, 1987, 58 (24): 2571- 2574
doi: 10.1103/PhysRevLett.58.2571 |
4 |
Van Saarloos W . Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection. Physical Review A, 1988, 37 (1): 211- 229
doi: 10.1103/PhysRevA.37.211 |
5 |
Danumjaya P , Pani A K . Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation. Journal of Computational and Applied Mathematics, 2005, 174 (1): 101- 117
doi: 10.1016/j.cam.2004.04.002 |
6 |
Onyejekwe O . A direct implementation of a modified boundary integral formulationation for the extended Fisher-Kolmogorov equation. Journal of Applied Mathematics and Physics, 2015, 3 (10): 1262- 1269
doi: 10.4236/jamp.2015.310155 |
7 |
Danumjaya P . Finite element methods for one dimensional fourth order semilinear partial differential equation. International Journal of Applied and Computational Mathematics, 2016, 2 (3): 395- 410
doi: 10.1007/s40819-015-0068-0 |
8 | Khiari N , Omrani K . Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimensions. Computers & Mathematics with Applications, 2011, 62 (11): 4151- 4160 |
9 | He D D . On the L∞-norm convergence of a three-level linearly implicit finite difference method for the extended Fisher-Kolmogorov equation in both 1D and 2D. Computers & Mathematics with Applications, 2016, 71 (12): 2594- 2607 |
10 | Liu F N, Zhao X P, Liu B. Fourier pseudo-spectral method for the extended Fisher-Kolmogorov equation in two dimensions. Advances in Difference Equations, 2017, Article number: 94 |
11 | Danumjaya P , Pani A K . Numerical methods for the extended Fisher-Kolmogorov(EFK) equation. International Journal of Numerical Analysis and Modeling, 2006, 3 (2): 186- 210 |
12 |
Danumjaya P , Pani A K . Mixed finite element methods for a fourth order reaction diffusion equation. Numerical Methods for Partial Differential Equations, 2012, 28 (4): 1227- 1251
doi: 10.1002/num.20679 |
13 | Wang J F , Li H , Siriguleng H , et al. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation. The Scientific World Journal, 2013, 2013 (1): 202- 212 |
14 | 张厚超, 王俊俊, 石东洋. Extended Fisher-Kolmogorov方程的一类低阶非协调混合有限元方法. 数学物理学报, 2018, 38A (3): 571- 587 |
Zhang H C , Wang J J , Shi D Y . A type of new lower order nonconforming mixed finite elements methods for the extended Fisher-Kolmogorov equation. Acta Mathematica Scientia, 2018, 38A (3): 571- 587 | |
15 | 张厚超, 石东洋. EFK方程一个新的低阶非协调混合有限元方法的高精度分析. 高校应用数学学报, 2017, 32A (4): 437- 454 |
Zhang H C , Shi D Y . High accuracy analysis of a new low order nonconforming mixed finite element method for the EFK equation. Applied Mathematics: A Journal of Chinese Universities, 2017, 32A (4): 437- 454 | |
16 | 石钟慈. 关于Wilson元的最佳收敛阶. 计算数学, 1986, (2): 159- 163 |
Shi Z C . A remark on the optimal order of convergence of Wilson's nonconforming element. Mathematica Numerica Sinica, 1986, (2): 159- 163 | |
17 |
Shi Z C . A convergengce condition for the quadrilateral Wilson element. Numerische Mathematik, 1984, 44 (3): 349- 361
doi: 10.1007/BF01405567 |
18 | 江金生, 程晓良. 二阶问题的一个类Wilson非协调元. 计算数学, 1992, (3): 274- 278 |
Jiang J S , Cheng X L . A nonconforming element like wilson's for second-order problems. Mathematica Numerica Sinica, 1992, (3): 274- 278 | |
19 |
Chen S C , Shi D Y . Accuracy analysis for quasi-Wilson element. Acta Mathematica Scientia, 2000, 20 (1): 44- 48
doi: 10.1016/S0252-9602(17)30730-0 |
20 |
Shi D Y , Zhang D . Approximation of nonconforming Quasi-Wilson element for Sine-Gordon equations. Journal of Computational Mathematics, 2013, 31 (3): 271- 282
doi: 10.4208/jcm.1212-m3897 |
21 | Shi D Y , Zhao Y M , Wang F L . Quasi-Wilson nonconforming element approximation for nonlinear dual phase lagging heat conduction equations. Applied Mathematics and Computation, 2014, 243 (17): 454- 464 |
22 |
Shi D Y , Wang F L , Zhao Y M . Superconvergence analysis and extrapolation of quasi-Wilson nonconforming finite element method for nonlinear Sobolev equations. Acta Mathematicae Applicatae Sinica, 2013, 29 (2): 403- 414
doi: 10.1007/s10255-013-0216-4 |
23 |
Shi D Y , Pei L F . Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Applied Mathematics and Computation, 2013, 219 (17): 9447- 9460
doi: 10.1016/j.amc.2013.03.008 |
24 | 宋士仓, 苏恒迪, 雷蕾. Wilson元求解二阶椭圆问题的一种新格式. 高等学校计算数学学报, 2015, 37 (2): 156- 165 |
Song S C , Su H D , Lei L . A new scheme of wilson element for second-order elliptic problems. Numerical Mathematics: A Journal of Chinese Universities, 2015, 37 (2): 156- 165 | |
25 |
Song S C , Sun M , Jiang L Y . A nonconforming scheme to solve the parabolic problem. Applied Mathematics and Computation, 2015, 265, 108- 119
doi: 10.1016/j.amc.2015.04.089 |
26 | Douglas J, Dupont T. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Berlin: Springer, 1976 |
27 | 杨晓侠, 李永献. 黏弹性方程的Wilson元收敛性分析. 应用数学, 2018, 31 (3): 513- 521 |
Yang X X , Li Y X . Convergence analysis of Wilson element for viscoelasticity type equations. Mathematica Applicata, 2018, 31 (3): 513- 521 | |
28 | 梁聪刚, 杨晓侠, 石东洋. 抛物积分微分方程的Wilson元收敛性分析. 数学物理学报, 2019, 39A (5): 1158- 1169 |
Liang C G , Yang X X , Shi D Y . Convergence analysis of Wilson element for parabolic integro-differential equation. Acta Mathematica Scientia, 2019, 39A (5): 1158- 1169 | |
29 |
Shi D Y , Ren J C . Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes. Nonlinear Analysis: TMA, 2009, 71 (9): 3842- 3852
doi: 10.1016/j.na.2009.02.047 |
30 | Hale J K. Ordinary Diffrential Equations. New York: Wiley-Interscience, 1969 |
31 | 张铁. 间断有限元理论与方法. 北京: 科学出版社, 2012 |
Zhang T . The Theory and Method of Discotinuous Finite Element. Beijing: Science Press, 2012 | |
32 | 孟雄, 舒期望, 杨扬. 发展型偏微分方程间断有限元方法的超收敛性. 中国科学, 2015, 45 (7): 1041- 1060 |
Meng X , Shu Q W , Yang Y . Superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations. Scientia Sinica Mathematica, 2015, 45 (7): 1041- 1060 | |
33 | 曹外香, 张智民. 解一维双曲守恒律方程和抛物方程的间断有限元法的逐点和区间平均值误差估计. 中国科学, 2015, 45 (8): 1115- 1132 |
Cao W X , Zhang Z M . Point-wise and cell average error estimates of the DG and LDG methods for 1D hyperbolic and parabolic equations. Scientia Sinica Mathematica, 2015, 45 (8): 1115- 1132 |
[1] | 陈华鑫,贾文生. 群体博弈的逼近定理及通有收敛性[J]. 数学物理学报, 2021, 41(5): 1566-1573. |
[2] | 邓海云,刘辉,宋文静. 临界Schrödinger映射非齐次初边值问题的有限差分格式[J]. 数学物理学报, 2021, 41(5): 1311-1322. |
[3] | 谢亚君. 一类基于Halley-Newton型的有效修正算法[J]. 数学物理学报, 2021, 41(4): 1066-1078. |
[4] | 马国栋. 强Wolfe线搜索下的修正PRP和HS共轭梯度法[J]. 数学物理学报, 2021, 41(3): 837-847. |
[5] | 万升联. 解变分不等式的一种二次投影算法[J]. 数学物理学报, 2021, 41(1): 237-244. |
[6] | 葛志昊,李瑞华. Bogoliubov-Tolmachev-Shirkov模型临界温度和能隙解的数值方法[J]. 数学物理学报, 2020, 40(6): 1699-1711. |
[7] | 王娟,原子霞. 具有对数敏感度和混合边界的一维趋化模型解的整体存在性和收敛性[J]. 数学物理学报, 2020, 40(6): 1646-1669. |
[8] | 李伟,黄鹏展. 流体相互作用模型的粘性分离有限元方法[J]. 数学物理学报, 2020, 40(5): 1362-1380. |
[9] | 杨柳,邓醉茶. 退化抛物型方程的一个初值反演问题[J]. 数学物理学报, 2020, 40(4): 891-903. |
[10] | 马国栋. 一般约束极大极小优化问题一个强收敛的广义梯度投影算法[J]. 数学物理学报, 2020, 40(3): 641-649. |
[11] | 何泽荣,张智强,裘哲勇. 一类非线性年龄等级结构种群模型的数值解法[J]. 数学物理学报, 2020, 40(2): 515-526. |
[12] | 梁聪刚,杨晓侠,石东洋. 抛物积分微分方程的Wilson元收敛性分析[J]. 数学物理学报, 2019, 39(5): 1158-1169. |
[13] | 章茜,蔡光辉. WOD随机变量序列的完全收敛性和矩完全收敛性[J]. 数学物理学报, 2019, 39(5): 1183-1191. |
[14] | 章志华,陈平炎. |
[15] | 赵雅迪, 吴立飞, 杨晓忠, 孙淑珍. 时间分数阶慢扩散方程的一类有效差分方法[J]. 数学物理学报, 2018, 38(6): 1122-1134. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 143
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 129
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|