1 |
Ambrosetti A , Rabinowitz P H . Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14, 347- 381
|
2 |
Costa D G , Magalhães C A . Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal, 1994, 23, 1401- 1412
doi: 10.1016/0362-546X(94)90135-X
|
3 |
Fang F , Liu S B . Nontrivial solutions of superlinear p-Laplacian equations. J Math Analysis Applic, 2009, 351, 138- 146
doi: 10.1016/j.jmaa.2008.09.064
|
4 |
Furtado M F , Silva E D . Superlinear elliptic problems under the non-quadraticity condition at infinity. Proc Roy Soc Edinburgh Sect A, 2015, 145 (4): 779- 790
doi: 10.1017/S0308210515000141
|
5 |
Ke X F , Tang C L . Existence and multiplicity of solutions to semilinear elliptic equation with nonlinear term of superlinear and subcritical growth. Electron J Differential Equations, 2018, 88, 1- 17
|
6 |
Lan Y Y , Ta ng , C L . Existence of solutions to a class of semilinear elliptic equations involving general subcritical growth. Proc Roy Soc Edinburgh Sect A, 2014, 144 (4): 809- 818
doi: 10.1017/S030821051300036X
|
7 |
Liu Z , Wang Z Q . On the Ambrosetti-Rabinowitz super-linear condition. Advanced Nonlinear Studies, 2004, 4 (4): 563- 574
doi: 10.1515/ans-2004-0411
|
8 |
Miyagaki O H , Souto M A S . Superlinear problems without Ambrosetti and Rabinowitz growth condition. J Differential Equations, 2008, 245, 3628- 3638
doi: 10.1016/j.jde.2008.02.035
|
9 |
Schechter M , Zou W M . Superlinear problems. Pacific J Math, 2004, 214, 145- 160
doi: 10.2140/pjm.2004.214.145
|
10 |
Komiya Y , Kajikiya R . Existence of infinitely many solutions for the (p, q)-Laplace equation. NoDEA Nonlinear Differential Equations Appl, 2016, 23 (49): 1- 23
|
11 |
Alves C O , Ercole G , Huamán Bolaños M D . Ground state solutions for a semilinear elliptic problem with critical-subcritical growth. Adv Nonlinear Anal, 2020, 9 (1): 108- 123
|
12 |
Cao D M , Li S L , Liu Z Y . Nodal solutions for a supercritical semilinear problem with variable exponent. Calc Var Partial Differential Equations, 2018, 57, 19- 38
doi: 10.1007/s00526-017-1293-7
|
13 |
Hashizume M , Sano M . Strauss's radial compactness and nonlinear elliptic equation involving a variable critical exponent. J Funct Spaces, 2018, Article ID: 5497172
|
14 |
Kurata K , Shioji N . Compact embedding from $W_{0}^{1, 2}(\Omega)$ to $L^{q(x)}(\Omega)$ and its application to nonlinear elliptic boundary value problem with variable critical exponent. J Math Anal Appl, 2018, 339 (2): 1386- 1394
|
15 |
Liu J , Liao J F , Tang C L . Ground state solutions for semilinear elliptic equations with zero mass in $\mathbb{R}^{N}$. Electron J Differential Equations, 2015, 84, 1- 11
|
16 |
Marcos do J , Ruf B , Ubilla P . On supercritical Sobolev type inequalities and related elliptic equations. Calc Var Partial Differential Equations, 2016, 55 (4): 55- 83
|
17 |
Liu X Q , Zhao J F . p-Laplacian equations in $\mathbb{R}^{N}$ with finite potential via truncation method. Adv Nonlinear Anal, 2017, 17 (3): 595- 610
doi: 10.1515/ans-2015-5059
|
18 |
Vazquez J L . A strong maximum principle for some quasilinear elliptic equations. Appl Math Optim, 1984, 12 (3): 191- 202
|