1 |
Alves C O , Barros L M . Existence and multiplicity of solutions for a class of elliptic problem with critical growth. Monatsh Math, 2018, 187, 195- 215
doi: 10.1007/s00605-017-1117-z
|
2 |
Alves C O , Ding Y . Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity. J Math Anal Appl, 2003, 279, 508- 521
doi: 10.1016/S0022-247X(03)00026-X
|
3 |
Ambrosetti A . On Schrödinger-Poisson systems. Milan J Math, 2008, 76, 257- 274
doi: 10.1007/s00032-008-0094-z
|
4 |
Bartsch T , Pankov A , Wang Z . Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3, 549- 569
doi: 10.1142/S0219199701000494
|
5 |
Bartsch T , Wang Z . Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$. Comm Partial Differential Equations, 1995, 20, 1725- 1741
doi: 10.1080/03605309508821149
|
6 |
Bartsch T , Wang Z . Multiple positive solutions for a nonlinear Schrödinger equation. Z Angew Math Phys, 2000, 51, 366- 384
doi: 10.1007/PL00001511
|
7 |
Benci V , Cerami G . The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch Rational Mech Anal, 1991, 114, 79- 93
doi: 10.1007/BF00375686
|
8 |
Benci V , Fortunato D . An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11, 283- 293
doi: 10.12775/TMNA.1998.019
|
9 |
Brézis H , Lieb E . A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88, 486- 490
doi: 10.1090/S0002-9939-1983-0699419-3
|
10 |
Cerami G , Vaira G . Positive solutions for some non-autonomous Schrödinger-Poisson systems. J Differential Equations, 2010, 248, 521- 543
doi: 10.1016/j.jde.2009.06.017
|
11 |
Chang K . Infinite-Dimensional Morse Theory and Multiple Solution Problems. Boston: Birkhäuser, 1993
|
12 |
Clapp M , Ding Y . Positive solutions of a Schrödinger equation with critical nonlinearity. Z Angew Math Phys, 2004, 55, 592- 605
doi: 10.1007/s00033-004-1084-9
|
13 |
Ding Y , Szulkin A . Bound states for semilinear Schrödinger equations with sign-changing potential. Calc Var Partial Differential Equations, 2007, 29, 397- 419
doi: 10.1007/s00526-006-0071-8
|
14 |
方立婉, 黄文念, 汪敏庆. 临界情形下Schrödinger-Maxwell方程的基态解. 数学物理学报, 2019, 39A (3): 475- 483
doi: 10.3969/j.issn.1003-3998.2019.03.007
|
|
Fang L , Huang W , Wang M . Ground-state solutions for Schrödinger-Maxwell equations in the critical growth. Acta Math Sci, 2019, 39A (3): 475- 483
doi: 10.3969/j.issn.1003-3998.2019.03.007
|
15 |
冯晓晶. 带有双临界项的薛定谔-泊松系统非平凡解的存在性. 数学物理学报, 2020, 40A (6): 1590- 1598
doi: 10.3969/j.issn.1003-3998.2020.06.013
|
|
Feng X . Nontrivial solution for Schrödinger-Poisson type systems with double critical terms. Acta Math Sci, 2020, 40A (6): 1590- 1598
doi: 10.3969/j.issn.1003-3998.2020.06.013
|
16 |
Jiang Y , Zhou H . Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251, 582- 608
doi: 10.1016/j.jde.2011.05.006
|
17 |
Jin T , Yang Z . The fractional Schrödinger-Poisson systems with infinitely many solutions. J Korean Math Soc, 2020, 57, 489- 506
|
18 |
Landkof N . Foundations of Modern Potential Theory. New York: Springer-Verlag, 1972
|
19 |
Sun J , Wu T . Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J Differential Equations, 2014, 256, 1771- 1792
doi: 10.1016/j.jde.2013.12.006
|
20 |
Yang Z , Yu Y , Zhao F . Concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system involving critical exponent. Commun Contemp Math, 2019, 21, 1- 46
|
21 |
Yang Z , Zhang W , Zhao F . Existence and concentration results for fractional Schrödinger-Poisson system via penalization method. Electron J Differential Equations, 2021, 14, 1- 31
|
22 |
Ye Y , Tang C . Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential. Calc Var Partial Differential Equations, 2015, 53, 383- 411
doi: 10.1007/s00526-014-0753-6
|
23 |
Zhang J , Lou Z . Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth. J Math Phys, 2021, 62, 1- 14
|
24 |
Zhao L , Liu H , Zhao F . Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J Differential Equations, 2013, 255, 1- 23
doi: 10.1016/j.jde.2013.03.005
|
25 |
Zhao L , Zhao F . Positive solutions for Schrödinger-Poisson equations with a critical exponent. Nonlinear Anal, 1998, 11, 283- 293
|