数学物理学报 ›› 2021, Vol. 41 ›› Issue (6): 1684-1704.
收稿日期:
2020-08-06
出版日期:
2021-12-26
发布日期:
2021-12-02
通讯作者:
张再云
E-mail:1226@126.com
基金资助:
Zaiyun Zhang1,*(),Zhenhai Liu2,Youjun Deng3
Received:
2020-08-06
Online:
2021-12-26
Published:
2021-12-02
Contact:
Zaiyun Zhang
E-mail:1226@126.com
Supported by:
摘要:
研究了一类具有时变时滞效应和速度相关材料密度的非线性粘弹性方程.在适当的松弛函数和时变时滞效应假设下,分别用Faedo-Galerkin方法和摄动能量方法证明了弱解的整体存在性和能量的一般衰减性.这一结果改进了早期文献[
中图分类号:
张再云,刘振海,邓又军. 具有时变时滞和速度相关材料密度的非线性粘弹性方程的整体存在性和一般衰减性[J]. 数学物理学报, 2021, 41(6): 1684-1704.
Zaiyun Zhang,Zhenhai Liu,Youjun Deng. Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density[J]. Acta mathematica scientia,Series A, 2021, 41(6): 1684-1704.
1 |
Kirane M , Said-Houari B . Existence and aymptotic stability of a viscoelastic wave equation with a delay. Z Angew Math Phys, 2011, 62, 1065- 1082
doi: 10.1007/s00033-011-0145-0 |
2 |
Cavalcanti M M , Domingos Cavalcanti V , Ferreira J . Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Math Methods Appl Sci, 2001, 24, 1043- 1053
doi: 10.1002/mma.250 |
3 |
Zhang Z Y , Liu Z H , Gan X Y . Global existence and general decay for a nonlinear viscoelastic equation with nonlinear localized damping and velocity-dependent material density. Appl Anal, 2013, 92, 2021- 2048
doi: 10.1080/00036811.2012.716509 |
4 | Zhang Z Y , Miao X J . Global existence and uniform decay for wave equation with dissipative term and boundary damping. Computers & Mathematics with Applications, 2010, 59, 1003- 1018 |
5 |
Zhang Z Y , Liu Z H , Miao X J , Chen Y Z . Global existence and uniform stabilization of a generalized dissipative Klein-Gordon equation type with boundary damping. J Math Phys, 2011, 52, 023502
doi: 10.1063/1.3544046 |
6 |
Zhang Z Y , Liu Z H , Miao X J . Estimate on the dimension of global attractor for nonlinear dissipative Kirchhoff equation. Acta Appl Math, 2010, 110, 271- 282
doi: 10.1007/s10440-008-9405-1 |
7 |
Cavalcanti M M , Domingos Cavalcanti V , Fukuoka R , Soriano J A . Uniform stabilization of the wave equation on compact manifolds and locally distributed damping-a sharp result. J Math Anal Appl, 2009, 351, 661- 674
doi: 10.1016/j.jmaa.2008.11.008 |
8 |
Cavalcanti M M , Domingos Cavalcanti V , Fukuoka R , Soriano J A . Asymptotic stability of the wave equation on compact surfaces and locally distributed damping: a sharp result. Arch Ration Mech Anal, 2010, 197, 925- 964
doi: 10.1007/s00205-009-0284-z |
9 | Cavalcanti M M , Domingos Cavalcanti V , Soriano J A . Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Elec J Diff Equa, 2002, 44, 1- 14 |
10 | Berrimi S , Messaoudi S A . Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Elec J Diff Equa, 2004, 88, 1- 10 |
11 |
Cavalcanti M M , Oquendo H P . Frictional verus viscoelastic damping in a semilinear wave equation. SIAM J Control Optim, 2003, 42, 1310- 1324
doi: 10.1137/S0363012902408010 |
12 |
Zhang Z Y , Liu Z H , Miao X J , Chen Y Z . A note on decay properties for the solutions of a class of partial differential equation with memory. J Appl Math Comput, 2011, 37, 85- 102
doi: 10.1007/s12190-010-0422-7 |
13 |
Liu W J . General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms. J Math Phys, 2009, 50, 113506
doi: 10.1063/1.3254323 |
14 |
Liu W J . Uniform decay of solutions for a quasilinear system of viscoelastic equations. Nonlinear Anal TMA, 2009, 71, 2257- 2267
doi: 10.1016/j.na.2009.01.060 |
15 |
Liu W J . General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source. Nonlinear Anal TMA, 2010, 73, 1890- 1904
doi: 10.1016/j.na.2010.05.023 |
16 | Liu W J . General decay of solutions to a viscoelastic equation with nonlinear localized damping. Ann Acad Sci Fenn Math, 2009, 34, 291- 302 |
17 | Liu W J . General decay of solutions of a nonlinear system of viscoelastic equations. Acta Appl Math, 2010, 110, 53- 165 |
18 |
Liu W J . Exponential or polynomial decay of solutions to a viscoelastic equation with nonlinear localized damping. J Appl Math Comput, 2010, 32, 59- 68
doi: 10.1007/s12190-009-0232-y |
19 |
Han X S , Wang M X . Global existence and uniform decay for a nonlinear viscoelastic equation with damping. Nonlinear Anal TMA, 2009, 70, 3090- 3098
doi: 10.1016/j.na.2008.04.011 |
20 |
Han X S , Wang M X . General decay of energy for a viscoelastic equation with nonlinear damping. Journal of the Franklin Institute, 2010, 347, 806- 817
doi: 10.1016/j.jfranklin.2010.02.010 |
21 |
Han X S , Wang M X . Global existence and asymptotic behavior for a couple hyperbolic system with localized damping. Nonlinear Anal TMA, 2010, 72, 965- 986
doi: 10.1016/j.na.2009.07.032 |
22 |
Han X S , Wang M X . Energy decay rate for a couple hyperbolic system with nonlinear damping. Nonlinear Anal TMA, 2009, 70, 3264- 3272
doi: 10.1016/j.na.2008.04.029 |
23 |
Messaoudi S A , Tatar N E . Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math Methods Appl Sci, 2007, 30, 665- 680
doi: 10.1002/mma.804 |
24 | Cavalcanti M M , Domingos Cavalcanti V , Fukuoka R , et al. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differential and Integral Equations, 2001, 14, 85- 116 |
25 |
Messaoudi S A , Tatar N E . Exponential or polynomial decay for a quasilinear viscoelastic equation. Nonlinear Anal, 2008, 68, 785- 793
doi: 10.1016/j.na.2006.11.036 |
26 |
Tatar N E . Exponential decay for a viscoelastic problem with a singular kenerl. Z Angew Math Phys, 2009, 60, 640- 650
doi: 10.1007/s00033-008-8030-1 |
27 |
Berrimi S , Messaoudi S A . Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal, 2006, 64, 2314- 2331
doi: 10.1016/j.na.2005.08.015 |
28 |
Messaoudi S A . General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal, 2008, 69, 2589- 2598
doi: 10.1016/j.na.2007.08.035 |
29 |
Han X S , Wang M X . General decay of energy for a viscoelastic equation with nonlinear damping. Math Methods Appl Sci, 2009, 32, 346- 358
doi: 10.1002/mma.1041 |
30 | Liu W J . Asmptotic behavior of solutions of the time-delayed Burger's equation. Discrete Contin Dyn Syst Ser B, 2002, 2, 47- 56 |
31 |
Shang Y F , Xu G Q , Chen Y L . Stability analysis of Euler-Bernoulli beam with input delay in the boundary control. Asian J Control, 2012, 14, 186- 196
doi: 10.1002/asjc.279 |
32 |
Datko R . Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J Control Optim, 1988, 26, 697- 713
doi: 10.1137/0326040 |
33 |
Datko R , Lagnese J , Polis M P . An example on the effect of time delays in boundary feedback stabilization of wave equation. SIAM J Control Optim, 1986, 24, 152- 156
doi: 10.1137/0324007 |
34 |
Nicaise S , Pignotti C . Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J Control Optim, 2006, 45, 1561- 1585
doi: 10.1137/060648891 |
35 | Nicaise S , Pignotti C . Stabilization of the wave equation with boundary or internal distributed delay. Differential and Integral Equations, 2008, 21, 935- 958 |
36 |
Xu G Q , Yung S P , Li L K . Stabilization of the wave system with input delay in the boundary control. ESIAM: Control Optim Calc Var, 2006, 12, 770- 785
doi: 10.1051/cocv:2006021 |
37 |
Ait Benhassi E M , Ammari K , Boulite S , Maniar L . Feedback stabilization of a class of evolution equation with delay. J Evol Equa, 2009, 9, 103- 121
doi: 10.1007/s00028-009-0004-z |
38 | Nicaise S , Pignotti C , Valein J . Exponential stability of the wave equation with boundary time-varying delay. Discrete Contin Dyn Syst Ser S, 2011, 4, 693- 722 |
39 |
Caraballo T , Real J , Shaiklet L . Method of Lyapunov functionals construction in stability of delay evolution equations. J Math Anal Appl, 2007, 334, 1130- 1145
doi: 10.1016/j.jmaa.2007.01.038 |
40 |
Zhang Z Y , Liu Z H , Miao X J , Chen Y Z . Stability analysis of heat flow with boundary time-varying delay effect. Nonlinear Anal, 2010, 73, 1878- 1889
doi: 10.1016/j.na.2010.05.022 |
41 | Nicaise S , Pignotti C . Interior feedback stabilization of wave equations with time dependent delay. Elec J Diff Equa, 2011, 41, 1- 20 |
42 | Nicaise S , Pignotti C , Fridman E . Stability of the heat and the wave equations with boundary time-varying delays. Disc Conti Dyna Syst, 2009, 2, 559- 581 |
43 | Nicaise S , Valein J . Stabilization of the wave equation on 1-d networks with a delay term in thenodal feedbacks. Networks & Heterogeneous Media, 2007, 2, 425- 479 |
44 |
Fridman E , Nicaise S , Valein J . Stabilization of seconder order evolution equations with inbounded feedback with time-dependent delay. SIAM J Control Optim, 2010, 48, 5028- 5052
doi: 10.1137/090762105 |
45 |
Nicaise S , Valein J . Stabilization of seconder order evolution equations with inbounded feedback with delay. ESIAM: Control Optim Calc Var, 2010, 16, 420- 456
doi: 10.1051/cocv/2009007 |
46 | Lions J L . Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires. Paris: Dunod, 1969 |
47 | Zheng S M . Nonlinear Evolution Equations. Boca Raton: CRC Press, 2004 |
48 |
Liu W J . General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback. J Math Phys, 2013, 54, 043504
doi: 10.1063/1.4799929 |
49 |
Dai Q Y , Yang Z F . Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay. Z Angew Math Phys, 2014, 65, 885- 903
doi: 10.1007/s00033-013-0365-6 |
50 | Zhang Z Y, Huang J H, Liu Z H, Sun M B. Boundary stabilization of a nonlinear viscoelastic equation with interior time-varying delay and nonlinear dissipative boundary feedback. Abstract and Applied Analysis, 2014, Article ID: 102594 |
51 |
Cavalcanti M M , Domingos Cavalcanti V , Lasiecka I , Webler C M . Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Adv Nonlinear Anal, 2017, 6, 121- 145
doi: 10.1515/anona-2016-0027 |
52 |
Messaoudi S A , Said-Houari B . Energy decay in a transmission problem in thermoelasticity of type Ⅲ. IMA J Appl Math, 2009, 74, 344- 360
doi: 10.1093/imamat/hxp020 |
53 |
Messaoudi S A , Bonfoh A , Mukiawa S E , Enyi C D . The global attractor for a suspension bridge with memory and partially hinged boundary conditions. Z Angew Math Mech, 2017, 97, 159- 172
doi: 10.1002/zamm.201600034 |
54 |
Yang Z F . Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay. Z Angew Math Phys, 2015, 66, 727- 745
doi: 10.1007/s00033-014-0429-2 |
[1] | 贾哲,杨作东. 带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性[J]. 数学物理学报, 2021, 41(5): 1382-1395. |
[2] | 王娟,原子霞. 具有对数敏感度和混合边界的一维趋化模型解的整体存在性和收敛性[J]. 数学物理学报, 2020, 40(6): 1646-1669. |
[3] | 邱华, 张颖姝, 房少梅. 不可压粘弹性流体的Leray-α-Oldroyd模型整体解的存在性[J]. 数学物理学报, 2017, 37(1): 102-112. |
[4] | 张宏伟, 刘功伟, 呼青英. 一类具对数源项波动方程的初边值问题[J]. 数学物理学报, 2016, 36(6): 1124-1136. |
[5] | 刘洋. 位势井及其对具临界初始能量的非牛顿渗流方程的应用[J]. 数学物理学报, 2016, 36(6): 1211-1220. |
[6] | 黄祖达. 一类具反馈控制的时滞飞蝇方程的伪概周期解[J]. 数学物理学报, 2016, 36(3): 558-568. |
[7] | 狄华斐, 尚亚东. 一类带有非线性阻尼项和源项的四阶波动方程整体解的存在性与不存在性[J]. 数学物理学报, 2015, 35(3): 618-633. |
[8] | 沈继红, 张明有, 杨延冰, 刘博为, 徐润章. 具阻尼的高维广义Boussinesq 方程的Cauchy 问题的整体适定性[J]. 数学物理学报, 2014, 34(5): 1173-1187. |
[9] | 米永生, 穆春来, 吴云龙. 具有多重非线性的非牛顿多方渗流方程的整体存在性与非存在性[J]. 数学物理学报, 2014, 34(3): 626-637. |
[10] | 凌征球, 周泽文. 非局部边界条件的退化抛物方程组解的爆破和整体存在性[J]. 数学物理学报, 2014, 34(2): 338-346. |
[11] | 曲风龙, 王玉泉. 一类带有趋化性扩散的细菌模型一致有界解的整体存在性[J]. 数学物理学报, 2014, 34(2): 409-418. |
[12] | 毛剑峰, 黎野平. 三维双极Euler-Poisson方程初值问题光滑解的整体存在性和渐近性[J]. 数学物理学报, 2013, 33(3): 510-522. |
[13] | 王术, 冯跃红, 李新. 双极可压缩等熵Euler-Maxwell系统光滑周期解的整体存在性[J]. 数学物理学报, 2012, 32(6): 1041-1049. |
[14] | 凌征球, 卢伟明, 周泽文. 带非局部边界条件的半线性抛物系统的一致爆破模式[J]. 数学物理学报, 2012, 32(2): 433-440. |
[15] | 李俊民. 非线性参数化时变时滞系统自适应迭代学习控制[J]. 数学物理学报, 2011, 31(3): 682-690. |
|