1 |
Adams R A , Fournier J F . Sobolev Spaces. New York: Acdamic Press, 2003
|
2 |
Bae H O . Analicity and asymptotics for the Stokes solutions in a weighted space. J Math Anal Appl, 2002, 269, 147- 171
|
3 |
Fröhlich A . The Helmholtz decomposition of weighted $L^{q}$ spaces for Muckenhoupt weights. Annali dell'Universita di Ferrara, 2000, 46, 11- 19
|
4 |
Fröhlich A . The Stokes operator in weighted $L^{q}$ spaces I: weighted estimates for the Stokes resolvent problem in a half-space. J Math Fluid Mech, 2003, 5, 166- 199
doi: 10.1007/s00021-003-0080-8
|
5 |
Fröhlich A . Solutions of the Navier-Stoke initial value problem in weighted $L^{q}$-spaces. Math Nachr, 2004, 269, 150- 166
|
6 |
Galdi G P . An Introduction to the Navier-Stokes Initial-Boundary Value Problem, Fundamental Directions in Mathematical Fluid Mechanics. Basel: Birkhäuser, 2000
|
7 |
Giga Y . Solutions for semilinear parabolic equations in $L^{p}$ and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 1986, 62, 186- 212
doi: 10.1016/0022-0396(86)90096-3
|
8 |
Han P . Weighted decay results for the nonstationary Stokes flow and Navier-Stokes equations in half spaces. J Math Fluid Mech, 2015, 17, 599- 626
doi: 10.1007/s00021-015-0209-6
|
9 |
Han P . Large time behavior for the nonstationary Navier-Stokes flows in the half-space. Adv Math, 2016, 288, 1- 58
doi: 10.1016/j.aim.2015.10.010
|
10 |
Han P . On weighted estimates for the Stokes flows, with application to the Navier-Stokes equations. J Math Fluid Mech, 2018, 20, 1155- 1172
doi: 10.1007/s00021-018-0360-y
|
11 |
He C , Wang L . Weighted $L^{p}$-estimates for Stokes flow in ${\mathbb R}_{+}^{n}$ with applications to the non-stationary Navier-Stokes flow. Science China Mathematics, 2011, 53 (3): 573- 586
|
12 |
Iwashita H . $L_{q}$-$L_{r}$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in $L_{q}$ spaces. Math Ann, 1989, 285, 265- 288
doi: 10.1007/BF01443518
|
13 |
Kato T . Strong $L^{p}$-solutions of the Navier-Stokes equation in ${\mathbb R}^{m}$, with applications to weak solutions. Math Z, 1984, 187, 471- 480
doi: 10.1007/BF01174182
|
14 |
Kozono H . Global $L^{n}$-solution and its decay property for the Navier-Stokes equations in half-space ${\mathbb R}_{+}^{n}$. J Differential Equations, 1989, 79, 79- 88
doi: 10.1016/0022-0396(89)90114-9
|
15 |
Kobayashi T, Kubo T. Weighted $L^{p}$-$L^{q}$ estimates of Stokes semigroup in half-space and its application to the Navier-Stokes equations//Amann H, et al. Recent Developments of Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics. Basel: Birkhäuser, 2006: 337-349
|
16 |
Meyries M. Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors[D]. Karlsruhe: Karlsruhe Institute of Technology, 2010
|
17 |
Prüss J , Simonett G . Maximal regularity for evolution equations in weighted $L_p$-spaces. Arch Math, 2004, 82, 415- 431
|
18 |
Stein E M , Weiss G . Fractional integral on $n$ dimensional Euclidean space. J Math Mech, 1958, 7, 503- 514
|
19 |
Stein E M . Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton Univ Press, 1971
|
20 |
Ukai S . A solution formula for the Stokes equation in ${\mathbb R}_{+}^{n}$. Communications on Pure and Applied Mathematics, 1987, 40, 611- 621
doi: 10.1002/cpa.3160400506
|
21 |
张书陶. 加权Hardy-Sobolev不等式及其应用. 数学物理学报, 2013, 33A (4): 621- 626
doi: 10.3969/j.issn.1003-3998.2013.04.002
|
|
Zhang S . Weighted Hardy-Sobolev inequality and its application. Acta Math Sci, 2013, 33A (4): 621- 626
doi: 10.3969/j.issn.1003-3998.2013.04.002
|