数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1263-1269.

• 论文 • 上一篇    下一篇

大范围分析中Fredholm算子的广义横截性定理

李强1,2,*()   

  1. 1 吉林大学数学学院 长春 130012
    2 齐齐哈尔大学理学院 黑龙江齐齐哈尔 161006
  • 收稿日期:2020-04-15 出版日期:2021-10-26 发布日期:2021-10-08
  • 通讯作者: 李强 E-mail:liq347@nenu.edu.cn
  • 作者简介:李强, E-mail: liq347@nenu.edu.cn
  • 基金资助:
    国家自然科学基金(11801211);黑龙江省省属高等学校基本科研业务费科研项目(135509216);齐齐哈尔市科学技术计划项目(SFGG-201916)

Generalized Transversality Theorem for Fredholm Operator in Global Analysis

Qiang Li1,2,*()   

  1. 1 Department of Mathematics, Jilin University, Changchun 130012
    2 School of Science, Qiqihar University, Heilongjiang Qiqihar 161006
  • Received:2020-04-15 Online:2021-10-26 Published:2021-10-08
  • Contact: Qiang Li E-mail:liq347@nenu.edu.cn
  • Supported by:
    the NSFC(11801211);the Fundamental Research Funds in Heilongjiang Provincial Universities(135509216);the Science and Technology Program of Qiqihar(SFGG-201916)

摘要:

该文研究了无穷维Banach流形$ M, S, N $间的Fredholm映射$ F(u, s):M\times S\rightarrow N $的广义横截性定理. 如果映射$ F(u, s) $广义横截于单点集$ \{\hat{\theta}\} $, 而且$ f_s(u) = F(u, s) $在外部参数s的意义下是Fredholm映射, 那么必然存在一个剩余集$ \Sigma\subset S, $使得对于任意的$ s\in \Sigma $, $ f_s(u) $都广义横截于$ \{\hat{\theta}\} $.

关键词: 横截, 广义逆, Banach流形, 奇点

Abstract:

Generalized transversality theorem for $ C^r $ mapping $ F(u, s):M\times S\rightarrow N $ is established in infinite dimensional Banach manifolds $ M, S, N $. If the mapping $ F(u, s) $ is generalized transversal to a single point set $ \{\hat{\theta}\} $, and $ f_s(u)=F(u, s) $ is a Fredholm operator in the sense of parameter s, then there exists a residual set $ \Sigma\subset S, $ such that $ f_s(u) $ are generalized transversal to $ \{\hat{\theta}\} $, for all $ s\in \Sigma. $

Key words: Transversality, Generalized inverse, Banach manifold, Singularities

中图分类号: 

  • O177.91