数学物理学报 ›› 2021, Vol. 41 ›› Issue (4): 1166-1180.

• 论文 • 上一篇    下一篇

在修正二元Min(N, D)-策略下多级适应性休假M/G/1排队的性能分析

王敏1(),唐应辉1,*(),兰绍军2,*()   

  1. 1 四川师范大学数学科学学院 成都 610066
    2 四川轻化工大学数学与统计学院 四川自贡 643000
  • 收稿日期:2019-03-19 出版日期:2021-08-26 发布日期:2021-08-09
  • 通讯作者: 唐应辉,兰绍军 E-mail:767076057@qq.com;tangyh@sicnu.edu.cn;sjlan89@163.com
  • 作者简介:王敏, E-mail: 767076057@qq.com
  • 基金资助:
    国家自然科学基金(71571127)

The Performance Analysis of the $M/G/1$ Queue with Multiple Adaptive Vacations under the Modified Dyadic Min($N, D$)-Policy

Min Wang1(),Yinghui Tang1,*(),Shaojun Lan2,*()   

  1. 1 School of Mathematical Science, Sichuan Normal University, Chengdu 610066
    2 School of Mathematics and Statistics, Sichuan University of Science and Engineering, Sichuan Zigong 643000
  • Received:2019-03-19 Online:2021-08-26 Published:2021-08-09
  • Contact: Yinghui Tang,Shaojun Lan E-mail:767076057@qq.com;tangyh@sicnu.edu.cn;sjlan89@163.com
  • Supported by:
    the NSFC(71571127)

摘要:

该文考虑具有多级适应性休假和修正二元Min ($N,D$)-策略的$M/G/1$空竭服务排队系统.每当系统变空时,服务员离开系统去休假.一旦系统中的顾客数达到$N$个或者服务员的总工作量不小于给定的阀值$D$,服务员立即结束休假,为等待的顾客提供服务.服务员对每个顾客的工作量的本质含义是指顾客需要完成的服务项目中所包含的事件数量.工作量的计量单位可以是计数单位、重量单位等等.首先,根据系统的稳态队长分布的随机分解性质,得到了稳态队长分布的概率母函数和平均队长的表达式.其次,讨论了平均服务员忙期和忙循环.进一步,获得了一些特例(例如,当休假次数是固定正整数$J$时)的平均队长和平均忙循环的表达式.最后,运用更新过程理论,给出了系统长期单位时间内的期望费用的显示表达式,并通过数值计算实例,确定了使得系统在长期单位时间内的期望费用最小的最优联合控制策略.

关键词: $M/G/1$排队系统, 多级适应性休假, Min ($N, D$)-策略, 稳态队长分布, 最优联合控制策略

Abstract:

This paper considers an $M/G/1$ queueing system with multiple adaptive vacations for exhausted services under the modified dyadic Min($N, D$) in which the server who is on vacation resumes its service if either $N$ customers accumulate in the system or the total workload of the server for all the waiting customers is not less than a given threshold $D$. The essential meaning of the workload of the server for every customer refers to the quantity of events included in the completed service items required by the customer. The unit of measurement for the workload may be a counting unit, a weight unit, etc. According to the well-known stochastic decomposition property of the steady-state queue size, both the probability generating function of the steady-state queue length distribution and the expression of the expected queue length are obtained. Additionally, the mean server busy period and busy cycle period are discussed. Based on the analytical results, the explicit expressions of the expected queue length and the expected length of server busy cycle period for some special cases (e.g., the number of vacations is a fixed positive integer $J$) are derived. Finally, through the renewal theory, the explicit expression of the long-run expected cost per unit time is derived. Meanwhile, numerical examples are provided to determine the optimal joint control policy for economizing the system cost.

Key words: $M/G/1$ queueing system, Multiple adaptive vacations, Min($N, D$)-policy, Steady-state queue length distribution, Optimal joint control policy

中图分类号: 

  • O226