数学物理学报 ›› 2021, Vol. 41 ›› Issue (2): 326-335.

• 论文 • 上一篇    下一篇

常系数无穷维Hamilton系统的二阶循环算子结构

耿万鹏,任文秀*(),程意苏()   

  1. 内蒙古工业大学理学院 呼和浩特 010051
  • 收稿日期:2020-01-09 出版日期:2021-04-26 发布日期:2021-04-29
  • 通讯作者: 任文秀 E-mail:renwenxiu2003@hotmail.com;1070448132@qq.com
  • 作者简介:程意苏, E-mail: 1070448132@qq.com

Second Order Recursion Operator Structure of Constant Coefficient Infinite Dimension Hamiltonian System

Wanpeng Geng,Wenxiu Ren*(),Yisu Cheng()   

  1. School of Sciences, Inner Mongolia University of Technology, Hohhot 010051
  • Received:2020-01-09 Online:2021-04-26 Published:2021-04-29
  • Contact: Wenxiu Ren E-mail:renwenxiu2003@hotmail.com;1070448132@qq.com

摘要:

该文借助于有限和形式的常系数Hamilton算子,将一般体系循环算子的获得方法应用到无穷维形式的Hamilton正则系统.在结果方面,获得了约束条件下一阶常系数Hamilton算子所允许的循环算子的一般结构及其系数的具体形式.又通过算例验证了结论的正确性与便捷性.

关键词: 常系数Hamilton算子, 无穷维线性Hamilton正则系统, 循环算子

Abstract:

By virtue of limited and formal constant coefficient Hamiltonian operator, it applies the method of general system recursion operator to Hamiltonian canonical system of infinite dimensional form. As to the result, the general structure of the recursion operator allowed by the next-order constant coefficient Hamiltonian operator under constraint condition and specific form of its coefficient are obtained. And then, it verifies the correctness and convenience of the conclusion by means of calculating example.

Key words: Constant coefficient Hamiltonian operator, Infinite dimensional linear Hamiltonian canonical system, Recursion operator

中图分类号: 

  • O175