数学物理学报 ›› 2021, Vol. 41 ›› Issue (1): 245-253.
收稿日期:
2019-07-23
出版日期:
2021-02-26
发布日期:
2021-01-29
通讯作者:
周琴
E-mail:19891881@qq.com
基金资助:
Received:
2019-07-23
Online:
2021-02-26
Published:
2021-01-29
Contact:
Qin Zhou
E-mail:19891881@qq.com
Supported by:
摘要:
该文在Bakhvalov-Shishkin网格上求解具有左边界层或右边界层的对流扩散方程,并采用差分进化算法对Bakhvalov-Shishkin网格中的参数进行优化,获得了该网格上具有最优精度的数值解.对三个算例进行了数值模拟,数值结果表明:采用差分进化算法求解具有较高的计算精度和收敛性,特别是边界层的数值解精度明显优于选择固定网格参数时的结果.
中图分类号:
周琴,程立正. Bakhvalov-Shishkin网格上求解边界层问题的差分进化算法[J]. 数学物理学报, 2021, 41(1): 245-253.
Qin Zhou,Lizheng Cheng. Differential Evolution Algorithms for Boundary Layer Problems on Bakhvalov-Shishkin Mesh[J]. Acta mathematica scientia,Series A, 2021, 41(1): 245-253.
表 1
差分进化算法求解算例1的最优网格参数β1及目标函数值"
ε | N = 32 | N = 64 | N = 128 | N = 256 | ||||
误差 | β1 | 误差 | β1 | 误差 | β1 | 误差 | β1 | |
10-2 | 3.337E-02 | 0.269 | 1.766E-02 | 0.278 | 9.068E-03 | 0.296 | 4.589E-03 | 0.293 |
10-3 | 3.578E-02 | 0.213 | 1.861E-02 | 0.255 | 9.468E-03 | 0.279 | 4.774E-03 | 0.282 |
10-4 | 3.664E-02 | 0.211 | 1.896E-02 | 0.245 | 9.577E-03 | 0.265 | 4.808E-03 | 0.275 |
10-5 | 3.839E-02 | 0.173 | 1.962E-02 | 0.212 | 9.778E-03 | 0.238 | 4.857E-03 | 0.261 |
10-6 | 4.023E-02 | 0.156 | 2.062E-02 | 0.183 | 1.017E-02 | 0.211 | 4.986E-03 | 0.234 |
表 2
差分进化算法求解算例2的最优网格参数β1及目标函数值"
ε | N = 32 | N = 64 | N = 128 | N = 256 | ||||
误差 | β1 | 误差 | β1 | 误差 | β1 | 误差 | β1 | |
10-2 | 2.646E-02 | 0.842 | 1.403E-02 | 0.797 | 7.218E-03 | 0.837 | 3.657E-03 | 0.826 |
10-3 | 2.790E-02 | 0.711 | 1.463E-02 | 0.729 | 7.447E-03 | 0.769 | 3.749E-03 | 0.806 |
10-4 | 2.808E-02 | 0.710 | 1.471E-02 | 0.728 | 7.483E-03 | 0.768 | 3.765E-03 | 0.790 |
10-5 | 2.810E-02 | 0.709 | 1.472E-02 | 0.728 | 7.487E-03 | 0.768 | 3.766E-03 | 0.790 |
10-6 | 2.810E-02 | 0.709 | 1.472E-02 | 0.728 | 7.487E-03 | 0.768 | 3.767E-03 | 0.790 |
表 3
差分进化算法求解算例3的最优网格参数β2及目标函数值"
ε | N = 32 | N = 64 | N = 128 | N = 256 | ||||
误差 | β2 | 误差 | β2 | 误差 | β2 | 误差 | β2 | |
10-2 | 5.773E-03 | 0.441 | 2.879E-03 | 0.446 | 1.393E-03 | 0.430 | 6.534E-04 | 0.397 |
10-3 | 6.997E-03 | 0.345 | 3.638E-03 | 0.357 | 1.851E-03 | 0.364 | 9.320E-04 | 0.368 |
10-4 | 7.154E-03 | 0.330 | 3.733E-03 | 0.340 | 1.907E-03 | 0.346 | 9.636E-04 | 0.350 |
10-5 | 7.172E-03 | 0.328 | 3.743E-03 | 0.338 | 1.913E-03 | 0.344 | 9.670E-04 | 0.347 |
10-6 | 7.173E-03 | 0.328 | 3.744E-03 | 0.338 | 1.914E-03 | 0.344 | 9.673E-04 | 0.347 |
1 |
Linβ T . Layer-adapted meshes for convection-diffusion problems. Comput Methods Appl Mech Engrg, 2003, 192: 1061- 1105
doi: 10.1016/S0045-7825(02)00630-8 |
2 |
Zahra W K , Van D M . Discrete spline solution of singularly perturbed problem with two small parameters on a Shishkin-type mesh. Computational Mathematics and Modeling, 2018, 29 (3): 367- 381
doi: 10.1007/s10598-018-9416-3 |
3 |
Brdar M , Zarin H . A singularly perturbed problem with two parameters on a Bakhvalov-type mesh. Journal of Computational and Applied Mathematics, 2016, 292: 307- 319
doi: 10.1016/j.cam.2015.07.011 |
4 | Cen Z , Chen J , Xi L . A second-order hybrid finite difference scheme for a system of coupled singularly perturbed initial value problems. Journal of Computational and Applied Mathematics, 2010, 234 (12): 3445- 3457 |
5 |
周琴, 杨银. 求解二阶双曲型方程的自适应网格方法. 数学物理学报, 2019, 39A (4): 942- 950
doi: 10.3969/j.issn.1003-3998.2019.04.021 |
Zhou Q , Yang Y . Adaptive mesh method for solving a second-order hyperbolic equation. Acta Math Sci, 2019, 39A (4): 942- 950
doi: 10.3969/j.issn.1003-3998.2019.04.021 |
|
6 |
Linβ T , Radojev G , Zarin H . Approximation of singularly perturbed reaction-diffusion problems by quadratic-splines. Numerical Algorithms, 2012, 61 (1): 35- 55
doi: 10.1007/s11075-011-9529-7 |
7 |
Shakti D , Mohapatra J . Layer-adapted meshes for parameterized singular perturbation problem. Procedia Engineering, 2015, 127: 539- 544
doi: 10.1016/j.proeng.2015.11.342 |
8 | Yang J M . Improved uniform convergence of a finite difference approximation to a kind of singularly perturbed problems. Journal of Zhejiang University (Science Edition), 2013, 40 (2): 136- 139 |
9 | Chen Y P . Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid. Advances in Computational Mathematics, 2006, 24 (1): 197- 212 |
10 |
Zhou Q , Chen Y P , Yang Y . Two improved algorithms and implementation for a singularly perturbed problem on moving meshes. Journal of Systems Science and Complexity, 2011, 24 (6): 1232- 1240
doi: 10.1007/s11424-011-8138-9 |
11 | Yin Y , Zhu P , Wang B . Analysis of a streamline-diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed problem. Numerical Mathematics:Theory, Methods and Applications, 2017, 10 (1): 44- 64 |
12 |
Roos H G , Linβ T . Sufficient conditions for uniform convergence on layer-adapted grids. Computing, 1999, 63 (1): 27- 45
doi: 10.1007/s006070050049 |
13 | 周琴. 一类奇异摄动问题差分格式的一致收敛性分析. 湖南工程学院学报(自然科学版), 2009, 19 (3): 34- 36 |
Zhou Q . Analysis of uniform convergence for difference scheme of a singularly perturbed problem. Journal of Hunan Institute of Engineering(Natural Science Edition), 2009, 19 (3): 34- 36 | |
14 | 江山, 孙美玲. 多尺度有限元结合Bakhvalov-Shishkin网格法高效处理边界层问题的研究. 浙江大学学报(理学版), 2015, 42 (2): 142- 146 |
Jiang S , Sun M L . Combining the multiscale finite element and Bakhvalov-Shishkin grid to solve the boundary layer problems. Journal of Zhejiang University(Science Edition), 2015, 42 (2): 142- 146 | |
15 | Storn R , Price K . Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359 |
16 | 魏文红, 王甲海, 陶铭. 基于泛化反向学习的多目标约束差分进化算法. 计算机研究与发展, 2016, 53 (6): 1410- 1421 |
Wei W H , Wang J H , Tao M . Multi-objective constrained differential evolution using generalized opposition-based learning. Journal of Computer Research and Development, 2016, 53 (6): 1410- 1421 | |
17 | 朱李楠, 王万良, 沈国江. 基于改进差分进化算法的云制造资源优化组合方法. 计算机集成制造系统, 2017, 1: 203- 214 |
Zhu L N , Wang W L , Shen G J . Resource optimization combination method based on improved differential evolution algorithm for cloud manufacturing. Computer Integrated Manufacturing Systems, 2017, 1: 203- 214 | |
18 | 刘利斌, 隆广庆, 上官珍萍. 差分进化与有理谱方法求解奇异摄动问题. 计算机工程与应用, 2018, 54 (17): 225- 230 |
Liu L B , Long G Q , Shangguan Z P . Differential evolution and rational spectral methods for singularly perturbed problems. Computer Engineering and Applications, 2018, 54 (17): 225- 230 |
[1] | 武利猛,倪明康,李素红,陆海波. 带有积分边界条件的奇异摄动边值问题的渐近解[J]. 数学物理学报, 2020, 40(5): 1192-1203. |
[2] | 王娜,王术. 平面平行管道中的MHD方程组的边界层[J]. 数学物理学报, 2019, 39(4): 738-760. |
[3] | 陈华雄,王岩岩,倪明康. 具有快慢层的非光滑奇异摄动问题的空间对照结构[J]. 数学物理学报, 2019, 39(4): 865-874. |
[4] | 刘帅, 沈建和, 周哲彦. 二阶半线性奇摄动边值问题的渐近解[J]. 数学物理学报, 2014, 34(5): 1104-1110. |
[5] | 杨宇博, 祝鹏, 尹云辉. 奇异摄动问题最优阶一致收敛的间断有限元分析[J]. 数学物理学报, 2014, 34(3): 716-726. |
[6] | 刘帅, 周哲彦, 沈建和. 二阶半线性奇摄动边值问题解的渐近行为[J]. 数学物理学报, 2014, 34(2): 437-444. |
[7] | 陈琼; 向昭银; 穆春来. 一类非局部反应扩散方程组解的爆破性质[J]. 数学物理学报, 2007, 27(3): 420-427. |
[8] | 莫嘉琪, 韩祥临. 一个非线性方程的渐近激波解[J]. 数学物理学报, 2004, 24(2): 164-167. |
[9] | 莫嘉琪. 一类非线性方程的激波解[J]. 数学物理学报, 2003, 23(5): 530-534. |
[10] | 韩祥临. 一类非线性方程的激波解[J]. 数学物理学报, 2003, 23(2): 253-256. |
[11] | 王秀群, 倪守平. 四阶微分方程三点边值问题的奇摄动[J]. 数学物理学报, 2002, 22(1): 41-47. |
[12] | 周笠, 段志文. 具边界层性质定态解的存在性与稳定性(Ⅰ)[J]. 数学物理学报, 1996, 16(1): 86-91. |
[13] | 张汉林. 带转向点的非线性系统的奇摄动[J]. 数学物理学报, 1995, 15(S1): 51-58. |
[14] | 肖成猷. 积分方程的奇摄动问题[J]. 数学物理学报, 1994, 14(S1): 46-52. |
[15] | 田根宝, 林宗池. 边界和算子双摄动的高阶拟线性常微分方程解的多重边界层现象[J]. 数学物理学报, 1994, 14(4): 442-450. |
|