数学物理学报 ›› 2020, Vol. 40 ›› Issue (6): 1420-1430.

• 论文 • 上一篇    下一篇

一类无界算子的二次数值域和谱

邱汶汶,齐雅茹*()   

  1. 内蒙古工业大学理学院 呼和浩特 010051
  • 收稿日期:2019-10-24 出版日期:2020-12-26 发布日期:2020-12-29
  • 通讯作者: 齐雅茹 E-mail:qiyaru@imut.edu.cn
  • 基金资助:
    国家自然科学基金(11601249)

The Quadratic Numerical Range and the Spectrum of Some Unbounded Block Operator Matrices

Wenwen Qiu,Yaru Qi*()   

  1. Department of Mathematics, College of Sciences, Inner Mongolia University of Technology, Hohhot 010051
  • Received:2019-10-24 Online:2020-12-26 Published:2020-12-29
  • Contact: Yaru Qi E-mail:qiyaru@imut.edu.cn
  • Supported by:
    the NSFC(11601249)

摘要:

该文研究了从二阶偏微分方程$\ddot{z}(t)-B\dot{z}(t)+Az (t)=0$中抽象出的无界算子${\cal M}=\left[\begin{array}{ccc}0&I\\-A&B\end{array}\right]$的谱分布, 其中$A$为一致正自伴算子, $B$为增生算子.先分析了算子${\cal M}$的闭性、逆有界等基本性质, 并证明了分块算子矩阵${\cal M}|_{H_{1}\times H_{1}}$的闭包与算子${\cal M}$相等, 其中$H_{1}={\cal D}(A)$为赋有范数$\|x\|_{H_{1}}=\|Ax\|$的Hilbert空间, 然后利用分块算子矩阵${\cal M}|_{H_{1}\times H_{1}}$的二次数值域估计了算子${\cal M}$的谱的范围.

关键词: 无界算子, 分块算子矩阵, 谱, 二次数值域

Abstract:

In this paper, we study the operator ${\cal M}=\left[\begin{array}{ccc} 0& I\\ -A& B \end{array} \right]$ which is associated with the second order differential equation $\ddot{z}(t)-B\dot{z}(t)+Az(t)=0$ in a Hilbert space, where $A$ is a self-adjoint and uniformly positive linear operator, $B$ is accretive. We prove that ${\cal M}$ is a boundedly invertible closed operator and $\overline{{\cal M}|_{H_{1}\times H_{1}}}$=${\cal M}$ where $H_{1}={\cal D}(A)$ with the norm $\|x \|_{H_{1}}=\|Ax\|$. And we characterize the spectral distribution of the operator ${\cal M}$ by using the quadratic numerical range of the block operator matrix ${\cal M}|_{H_{1}\times H_{1}}$.

Key words: Unbounded operator, Block operator matrices, Spectrum, Quadratic numerical range

中图分类号: 

  • O177.1