数学物理学报 ›› 2020, Vol. 40 ›› Issue (5): 1393-1408.
• 论文 • 上一篇
收稿日期:
2019-08-01
出版日期:
2020-10-26
发布日期:
2020-11-04
通讯作者:
卢朓
E-mail:tlu@math.pku.edu.cn
基金资助:
Meiyan Fu1,3,Tiao Lu1,2,*(),Xiangjiang Zhu1
Received:
2019-08-01
Online:
2020-10-26
Published:
2020-11-04
Contact:
Tiao Lu
E-mail:tlu@math.pku.edu.cn
Supported by:
摘要:
该文针对电磁粒子模拟中满足电荷守恒的电流分配方案,给出了适用于二维和三维Yee网格以及宏粒子的电荷分布为常数的统一公式,同时列举并分析了常用的、满足电荷守恒的三种电流分配方案.根据电荷守恒定律,带有某种电荷分布的宏粒子在一个时间步内运动所引起的元胞上的电流密度,满足一个超定的线性代数方程组.这个线性代数方程组的每一个解对应一种电流分配方案.该文对电荷分布为常数的宏粒子在二维Yee网格中的运动列出了三种可能的情形、在三维Yee网格中的运动选了最常见、最简单的情形.对每一种情形,建立相应的线性代数方程组、求出对应的通解公式.将三种常用的电荷守恒的电流分配方案作为每种情形下线性代数方程组的特解,分别给出其对应于通解公式的参数.
中图分类号:
付梅艳,卢朓,朱湘疆. 电磁粒子模拟中电荷守恒的电流分配方案满足的统一公式[J]. 数学物理学报, 2020, 40(5): 1393-1408.
Meiyan Fu,Tiao Lu,Xiangjiang Zhu. Unified Formulation of Charge-conserving Current Assignment in Electromagnetic Particle-in-Cell Simulation[J]. Acta mathematica scientia,Series A, 2020, 40(5): 1393-1408.
表 1
一维典型形状函数与形因子"
表 2
在四个元胞情形下, V方法、E方法和U方法给出的电流密度公式"
V method | E method | U method | |
其中: |
表 3
在六个元胞情形下, V方法、E方法和U方法给出的电流密度公式"
V method | E method | U method | |
其中: |
表 4
在七个元胞情形下, V方法, E方法和U方法给出的电流密度公式"
V method | E method | U method | |
其中: | |||
表 1
涉及四个元胞时相关形因子(二维)"
Form-factor | |
表 2
涉及六个元胞时相关形因子(二维)"
Form-factor | ||
表 3
涉及七个元胞时相关形因子(二维)"
Form-factor | ||||
表 4
涉及八个元胞时相关形因子(三维,最常见情形)"
Form-factor(1st order) | |
1 | Eastwood W . The virtual particle electromagnetic particle-mesh method. Computer Physics Communications, 1991, 64 (2): 252- 266 |
2 | Hockney W , Eastwood W . Computer Simulation Using Particles. New York: CRC press, 1988 |
3 | Birdsall K , Langdon A . Plasma Physics via Computer Simulation. New York: CRC press, 2004 |
4 |
Wang Y , Wang J G , Chen Z G , et al. Three-dimensional simple conformal symplectic particle-in-cell methods for simulations of high power microwave devices. Computer Physics Communications, 2016, 205, 1- 12
doi: 10.1016/j.cpc.2016.03.007 |
5 | Goplen B , Ludeking L , Smith D , Warren G . User-configurable MAGIC for electromagnetic PIC calculations. Computer Physics Communications, 1995, 87 (1/2): 54- 86 |
6 | Wang J G , Zhang D H , Liu C L , et al. UNIPIC code for simulations of high power microwave devices. Physics of Plasmas, 2009, 16 (3): 033108 |
7 |
Moon H , Teixeira F , Omelchenko A . Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids:A geometric perspective. Computer Physics Commun, 2015, 194, 43- 53
doi: 10.1016/j.cpc.2015.04.014 |
8 | Verboncoeur P , Langdon A , Gladd N . An object-oriented electromagnetic PIC code. Computer Physics Communications, 1995, 87 (1/2): 199- 211 |
9 |
Na Dong-Yeop , Omelchenko Yuri A , Moon Haksu , et al. Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids:Application to microwave vacuum electronic devices. Journal of Computational Physics, 2017, 346, 295- 317
doi: 10.1016/j.jcp.2017.06.016 |
10 | Gaponov-Grekhov V , Granatstein L . Applications of High-Power Microwaves. New York: Artech House Publishers, 1994 |
11 |
Li X Z , Wang J G , Sun J , et al. Experimental study on a high-power subterahertz source generated by an overmoded surface wave oscillator with fast startup. IEEE Transactions on Electron Devices, 2013, 60 (9): 2931- 2935
doi: 10.1109/TED.2013.2273489 |
12 | Wang J G , Wang G Q , Wang D Y , et al. Experimental study on a high-power subterahertz source generated by an overmoded surface wave oscillator with fast startup. IEEE Trans Elec Devices, 2013, (9): 2931- 2935 |
13 |
Na Dong-Yeop , Teixeira Fernando L . Analysis of multipactor effects by a particle-in-cell algorithm integrated with secondary electron Emission model on irregular grids. IEEE Transactions on Plasma Science, 2019, 47 (2): 1269- 1278
doi: 10.1109/TPS.2019.2892323 |
14 |
Wang J G , Cai L B , Zhu X Q , et al. Numerical simulations of high power microwave dielectric interface breakdown involving outgassing. Physics of Plasmas, 2010, 17 (6): 063503
doi: 10.1063/1.3432715 |
15 | Crouseilles N , Navaro P , Sonnendrücker E . Charge-conserving grid based methods for the Vlasov-Maxwell equations. Comptes Rendus Mécanique, 2014, 342 (10/11): 636- 646 |
16 | Villasenor J , Buneman O . Rigorous charge conservation for local electromagnetic field solvers. Computer Physics Communications, 1992, 69 (2): 306- 316 |
17 | Esirkepov T . Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Computer Physics Communications, 2001, 135 (2): 144- 153 |
18 | Umeda T , Omura Y , Tominaga T , Matsumoto H . A new charge conservation method in electromagnetic particle-in-cell simulations. Computer Physics Communications, 2003, 156 (1): 73- 85 |
19 | Barthelmé R , Parzani C . Numerical charge conservation in particle-in-cell codes. Numerical Methods for Hyperbolic and Kinetic Problems, 2005, 7, 7- 28 |
20 | Yu J Q , Jin X L , Zhou W M , et al. High-order interpolation algorithms for charge conservation in particle-in-cell simulations. Communications in Computational Physics, 2013, 13 (4): 1134- 1150 |
[1] | 梁聪刚,杨晓侠,石东洋. 抛物积分微分方程的Wilson元收敛性分析[J]. 数学物理学报, 2019, 39(5): 1158-1169. |
[2] | 王俊俊,杨晓侠. 一类非线性抛物方程H1-Galerkin混合有限元方法的高精度分析[J]. 数学物理学报, 2019, 39(4): 894-908. |
[3] | 孙艳萍,陈绍春. 纯位移线弹性方程Locking-Free非协调三棱柱单元的构造分析[J]. 数学物理学报, 2019, 39(2): 329-338. |
[4] | 张厚超, 王俊俊, 石东洋. Extended Fisher-Kolmogorov方程的一类低阶非协调混合有限元方法[J]. 数学物理学报, 2018, 38(3): 571-587. |
[5] | 方志朝, 李宏, 罗振东, 刘洋. Sine-Gordon方程的混合有限体积元方法及数值模拟[J]. 数学物理学报, 2018, 38(2): 395-416. |
[6] | 张厚超, 石东洋. 非线性四阶双曲方程低阶混合元方法的超收敛分析[J]. 数学物理学报, 2016, 36(4): 656-671. |
|