1 |
Eastwood W . The virtual particle electromagnetic particle-mesh method. Computer Physics Communications, 1991, 64 (2): 252- 266
|
2 |
Hockney W , Eastwood W . Computer Simulation Using Particles. New York: CRC press, 1988
|
3 |
Birdsall K , Langdon A . Plasma Physics via Computer Simulation. New York: CRC press, 2004
|
4 |
Wang Y , Wang J G , Chen Z G , et al. Three-dimensional simple conformal symplectic particle-in-cell methods for simulations of high power microwave devices. Computer Physics Communications, 2016, 205, 1- 12
doi: 10.1016/j.cpc.2016.03.007
|
5 |
Goplen B , Ludeking L , Smith D , Warren G . User-configurable MAGIC for electromagnetic PIC calculations. Computer Physics Communications, 1995, 87 (1/2): 54- 86
|
6 |
Wang J G , Zhang D H , Liu C L , et al. UNIPIC code for simulations of high power microwave devices. Physics of Plasmas, 2009, 16 (3): 033108
|
7 |
Moon H , Teixeira F , Omelchenko A . Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids:A geometric perspective. Computer Physics Commun, 2015, 194, 43- 53
doi: 10.1016/j.cpc.2015.04.014
|
8 |
Verboncoeur P , Langdon A , Gladd N . An object-oriented electromagnetic PIC code. Computer Physics Communications, 1995, 87 (1/2): 199- 211
|
9 |
Na Dong-Yeop , Omelchenko Yuri A , Moon Haksu , et al. Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids:Application to microwave vacuum electronic devices. Journal of Computational Physics, 2017, 346, 295- 317
doi: 10.1016/j.jcp.2017.06.016
|
10 |
Gaponov-Grekhov V , Granatstein L . Applications of High-Power Microwaves. New York: Artech House Publishers, 1994
|
11 |
Li X Z , Wang J G , Sun J , et al. Experimental study on a high-power subterahertz source generated by an overmoded surface wave oscillator with fast startup. IEEE Transactions on Electron Devices, 2013, 60 (9): 2931- 2935
doi: 10.1109/TED.2013.2273489
|
12 |
Wang J G , Wang G Q , Wang D Y , et al. Experimental study on a high-power subterahertz source generated by an overmoded surface wave oscillator with fast startup. IEEE Trans Elec Devices, 2013, (9): 2931- 2935
|
13 |
Na Dong-Yeop , Teixeira Fernando L . Analysis of multipactor effects by a particle-in-cell algorithm integrated with secondary electron Emission model on irregular grids. IEEE Transactions on Plasma Science, 2019, 47 (2): 1269- 1278
doi: 10.1109/TPS.2019.2892323
|
14 |
Wang J G , Cai L B , Zhu X Q , et al. Numerical simulations of high power microwave dielectric interface breakdown involving outgassing. Physics of Plasmas, 2010, 17 (6): 063503
doi: 10.1063/1.3432715
|
15 |
Crouseilles N , Navaro P , Sonnendrücker E . Charge-conserving grid based methods for the Vlasov-Maxwell equations. Comptes Rendus Mécanique, 2014, 342 (10/11): 636- 646
|
16 |
Villasenor J , Buneman O . Rigorous charge conservation for local electromagnetic field solvers. Computer Physics Communications, 1992, 69 (2): 306- 316
|
17 |
Esirkepov T . Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Computer Physics Communications, 2001, 135 (2): 144- 153
|
18 |
Umeda T , Omura Y , Tominaga T , Matsumoto H . A new charge conservation method in electromagnetic particle-in-cell simulations. Computer Physics Communications, 2003, 156 (1): 73- 85
|
19 |
Barthelmé R , Parzani C . Numerical charge conservation in particle-in-cell codes. Numerical Methods for Hyperbolic and Kinetic Problems, 2005, 7, 7- 28
|
20 |
Yu J Q , Jin X L , Zhou W M , et al. High-order interpolation algorithms for charge conservation in particle-in-cell simulations. Communications in Computational Physics, 2013, 13 (4): 1134- 1150
|