1 |
Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. New York: Elsevier, 2006
|
2 |
Podlubny I . Fractional Differential Equations. San Diego: Academic Press, 1999
|
3 |
El-Borai M M . Some probability densities and fundamental solutions of fractional evolution equations. Chaos Sol Frac, 2002, 14, 433- 440
doi: 10.1016/S0960-0779(01)00208-9
|
4 |
Zhou Y , Jiao F . Existence of mild solutions for fractional neutral evolution equations. Comput Math Appl, 2010, 59, 1063- 1077
doi: 10.1016/j.camwa.2009.06.026
|
5 |
Zhou Y , Zhang L , Shen X H . Existence of mild solutions for fractional evolution equations. J Integral Equations Appl, 2013, 25 (4): 557- 586
doi: 10.1216/JIE-2013-25-4-557
|
6 |
Hilfer R . Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000
|
7 |
Gu H , Trujillo J J . Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl Math Comput, 2015, 257, 344- 354
|
8 |
Li K , Peng J , Jia J . Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J Funct Anal, 2012, 263 (2): 476- 510
|
9 |
Wang J R , Fečkan M , Zhou Y . On the new concept solutions and existence results for impulsive fractional evolutions. Dynam Part Differ Equa, 2011, 8 (4): 345- 361
doi: 10.4310/DPDE.2011.v8.n4.a3
|
10 |
Zhou Y . Basic Theory of Fractional Differential Equations. Singapore: World Scientific, 2014
|
11 |
Zhou Y , Jiao F . Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal:RWA, 2017, 11 (5): 4465- 4475
|
12 |
Hernández E , O'Regan E , Balachandran K . Existence results for abstract fractional differential equations with nonlocal conditions via resolvent operators. Indag Math, 2013, 24 (1): 68- 82
doi: 10.1016/j.indag.2012.06.007
|
13 |
Gu H, Li B. Study on Sobolev type Hilfer fractional integro-differential equations with delay. J Fixed Point Theory Appl, 2018, 20, Article number: 44. https://doi.org/10.1007/s11784-018-0523-8
|
14 |
Gou H , Li B . Study a class of nonlinear fractional non-autonomous evolution equations with delay. J Pseudo-Differ Oper, 2017, 27 (2): 1- 22
|
15 |
Li X , Liu Z , Li J , et al. Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Math Sci, 2019, 39, 229- 242
doi: 10.1007/s10473-019-0118-5
|
16 |
Triggiani R . A note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J Control Optim, 1977, 15 (3): 407- 411
doi: 10.1137/0315028
|
17 |
Liu ZH , Lv J Y , Sakthivel R . Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces. IMA J Math Control Inform, 2014, 31 (3): 363- 383
doi: 10.1093/imamci/dnt015
|
18 |
Sakthivel R , Ren Y , Mahmudov N I . On the approximate controllability of semilinear fractional differential systems. Comput Math Appl, 2011, 62 (3): 1451- 1459
doi: 10.1016/j.camwa.2011.04.040
|
19 |
Sakthivel R , Ganesh R , Ren Y , Anthoni S M . Approximate controllability of nonlinear fractional dynamical systems. Commun Nonlinear Sci Numer Simul, 2013, 18 (12): 3498- 3508
doi: 10.1016/j.cnsns.2013.05.015
|
20 |
Mahmudov N I , Zorlu S . Approximate controllability of fractional integro-differential equations involving nonlocal initial conditions. Bound Value Probl, 2013, 2013, 118
doi: 10.1186/1687-2770-2013-118
|
21 |
Yang M , Wang Q . Approximate controllability of Riemann-Liouville fractional differential inclusions. Appl Math Comput, 2016, 274, 267- 281
|
22 |
Shukla A , Sukavanam N , Pandey D N . Approximate controllability of semilinear system with state delay using sequence method. J Franklin Inst, 2015, 352 (11): 5380- 5392
doi: 10.1016/j.jfranklin.2015.08.019
|
23 |
Zhou H X . Approximate controllability for a class of semilinear abstract equation. SIAM J Control Optim, 1983, 21 (4): 551- 565
doi: 10.1137/0321033
|
24 |
Ye H P , Gao J M , Ding Y S . A generalized Gronwall inequality and its application to a fractional differential equation. J Math Anal Appl, 2007, 328 (2): 1075- 1081
|
25 |
Henry D . Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer-Verlag, 1981
|