数学物理学报 ›› 2020, Vol. 40 ›› Issue (5): 1282-1294.

• 论文 • 上一篇    下一篇

基于序方法的Hilfer分数阶积分微分方程的逼近能控性

吕静云,杨小远*()   

  1. 北京航空航天大学数学科学学院 北京 100191
  • 收稿日期:2018-10-24 出版日期:2020-10-26 发布日期:2020-11-04
  • 通讯作者: 杨小远 E-mail:bhxyyang@126.com
  • 基金资助:
    国家自然科学基金(61671002)

Approximate Controllability of Hilfer Fractional Integro-Differential Equations Using Sequence Method

Jingyun Lv,Xiaoyuan Yang*()   

  1. School of Mathematical Sciences and LMIB, Beihang University, Beijing 100191
  • Received:2018-10-24 Online:2020-10-26 Published:2020-11-04
  • Contact: Xiaoyuan Yang E-mail:bhxyyang@126.com
  • Supported by:
    the NSFC(61671002)

摘要:

已有对分数阶微分方程的逼近能控性研究大都假设非线性项是一致有界的,并且相应的分数阶线性系统是逼近能控的.然而,这些假设条件太强.该文提出的方法不需要这些假设条件,利用序方法研究了Hilfer分数阶积分微分方程的逼近能控性.

关键词: 逼近能控性, Hilfer分数阶导数, 分数阶积分微分方程

Abstract:

Existing works on approximate controllability of fractional differential equations often assume that the nonlinear item is uniformly bounded and the corresponding fractional linear system is approximate controllable, which is, however, too constrained. In this paper, we omit these two assumptions and investigate the approximate controllability of Hilfer fractional integro-differential equations using sequence method.

Key words: Approximate controllability, Hilfer fractional derivative, Fractional integro-differ-ential equations

中图分类号: 

  • O175.15