1 |
Gürses M , Oguz O . A super AKNS scheme. Phys Lett A, 1985, 108, 437- 440
doi: 10.1016/0375-9601(85)90033-7
|
2 |
Chowdhury A R , Roy S . On the Bäckland transformation and Hamiltonian properties of superevaluation equations. J Math Phys, 1986, 27, 2464- 2468
doi: 10.1063/1.527309
|
3 |
Kupershmidt B A . A super Korteweg-de Vries equation:An integrable system. Phys Lett A, 1984, 102, 213- 215
doi: 10.1016/0375-9601(84)90693-5
|
4 |
Ma W X , He J S , Qin Z Y . A supertrace identity and its applications to superintegrable systems. J Math Phys, 2008, 49, 033511
doi: 10.1063/1.2897036
|
5 |
Tao S X , Xia T C , Shi H . Super-KN hierarchy and its super-Hamiltonian structure. Commun Theor Phys, 2011, 55, 391- 395
doi: 10.1088/0253-6102/55/3/03
|
6 |
You F C , Zhang J , Zhao Y . Super-Hamiltonian structures and conservation laws of a new Six-Component Super-Ablowitz-Kaup-Newell-Segur hierarchy. Abstract and Applied Analysis, 2014, 2014, 1- 7
|
7 |
Yu J , Ma W X , Ha J W , Chen S T . An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation. Commun Nonlin Sci Numer Simulat, 2017, 43, 151- 157
doi: 10.1016/j.cnsns.2016.06.033
|
8 |
Han J W , Yu J . A generalized super AKNS hierarchy associated with Lie superalgebra sl(2|1) and its super bi-Hamiltonian structure. Commun Nonlin Sci Numer Simulat, 2017, 44, 258- 265
doi: 10.1016/j.cnsns.2016.08.009
|
9 |
Zhang J , You F C , Zhao Y . A new super extension of Dirac hierarchy. Abstract and Applied Analysis, 2014, 2014, 93- 98
|
10 |
Ye Y J, Li Z H, Shen S F, Li C X. A generalized super integrable hierarchy of Dirac type. 2016, Arxiv ID: 1604.03728
|
11 |
Fuchssteiner B. Coupling of completely integrable systems: the perturbation bundle//Clarkson P A. Applications of Analytic and Geometric Methods to Nonlinear Differential Equations. Dordrecht: Kluwer, 2009: 125-138
|
12 |
Zhang Y F , Guo F K . Two pairs of Lie algebras and the integrable couplings as well as the Hamiltonian structure of the Yang hierarchy. Chaos, Solitons and Fractals, 2007, 34 (2): 490- 495
|
13 |
Zhang Y F , Tam H W . New integrable couplings and Hamiltonian structure of the KN hierarchy and the DLW hierarchy. Commun Nonlin Sci Numer Simulat, 2008, 13 (3): 524- 533
doi: 10.1016/j.cnsns.2006.06.003
|
14 |
Ma W X , Zhang Y . Component-trace identities for hamiltonian structures. Applicable Analysis, 2010, 89 (4): 457- 472
doi: 10.1080/00036810903277143
|
15 |
Tao S X , Xia T C . Lie algebra and Lie super algebra for integrable couplingof C-KdV hierarchy. Chin Phys Lett, 2010, 27 (4): 5- 8
|
16 |
Ma W X . Nonlinear continuous integrable hamiltonian couplings. Appl Math Comput, 2011, 217, 7238- 7244
|
17 |
Ma W X , Zhu Z N . Constructing nonlinear discrete integrable Hamiltonian couplings. Appl Math Comput, 2010, 60, 2601- 2608
doi: 10.1016/j.camwa.2010.08.076
|
18 |
Tao S X , Xia T C . Nonlinear super integrable couplings of super Broer-Kaup-Kupershmidt hierarchy and its super Hamiltonian structures. Adv Math Phys, 2013, 2013, 1- 8
|
19 |
You F C , Zhang J . Nonlinear superintegrable couplings for supercoupled KdV hierarchy with self-consistent sources. Rep Math Phys, 2015, 76, 131- 140
doi: 10.1016/S0034-4877(15)00032-4
|
20 |
Xing X Z , Wu J Z , Geng X G . Nonlinear super integrable couplings of super classical Boussinesq hierarchy. J Appl Math, 2014, 2014, 726- 732
|
21 |
Hu B B , Ma W X , Xia T C , Zhang L . Nonlinear integrable couplings of a generalized super Ablowitz-Kaup-Newell-Segur hierarchy and its super bi-Hamiltonian structures. Math Meth Appl Sci, 2018, 41, 1565- 1577
doi: 10.1002/mma.4686
|
22 |
Cao C W . A cubic system which generates Bargmann potential and N-gappotential. Chin Quart J Math, 1988, 3 (1): 90- 96
|
23 |
曹策问. AKN族的Lax组的非线性化. 中国科学, 1989, 7, 691- 698
|
|
Cao C W . Binary nonlinearization of AKN hierarchy. Chin Sci, 1989, 7, 691- 698
|
24 |
Zeng Y B , Li Y S . The constraints of potentials and the finite-dimensional integrable systems. J Math Phys, 1989, 30 (8): 1679- 1689
doi: 10.1063/1.528253
|
25 |
Cao C W . Nolinearization of the Lax system for AKNS hierarchy. Sci China Ser A, 1990, 3315, 528- 536
|
26 |
Cao C W , Geng X G . Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy. J Phy A Math Gen, 1990, 23 (18): 4117- 4125
doi: 10.1088/0305-4470/23/18/017
|
27 |
Cao C W , Geng X G . A monconfocal generator of involutive systems and three associated soliton hierarchies. J Math Phys, 1991, 32 (9): 2323- 2328
doi: 10.1063/1.529156
|
28 |
Cao C W . A classical integrable system and the involutive representation of solutions of the KdV equation. Acta Math Sinica, 1991, 7 (3): 216- 223
doi: 10.1007/BF02582998
|
29 |
Xia T C . Integrable couplings of classical-Boussinesq hierarchy and its Hamiltonian structure. Commun Theor Phys, 2010, 53, 25- 27
doi: 10.1088/0253-6102/53/1/06
|
30 |
Hu X B . An approach to generate superextentions of integrable systems. Phys A:Math General, 1997, 30, 619- 632
doi: 10.1088/0305-4470/30/2/023
|
31 |
Yang H X , Du J , Xu X X , Cui J P . Hamiltonian and Super-Hamiltonian systems of a hierarchy of soliton equations. Appl Math Comput, 2010, 217, 1497- 1508
|
32 |
Ma W X , He J S , Qin Z Y . A supertrance identity and its applications to superintegrable systems. J Math Phys, 2008, 49, 033511
doi: 10.1063/1.2897036
|
33 |
Yu J , Han J W , He J S . Binary nonlinearization of the super AKNS system under an implicit symmetry constraint. Phys A:Math Theo, 2009, 42, 465201
doi: 10.1088/1751-8113/42/46/465201
|
34 |
Zeng Y B , Ma W X , Lin R L . Integration of the soliton hierarchy with self-consistent sources. J Math Phys, 2000, 41, 5453- 5489
doi: 10.1063/1.533420
|