数学物理学报 ›› 2020, Vol. 40 ›› Issue (2): 501-514.

• 论文 • 上一篇    下一篇

非时齐复合Poisson风险模型的破产特征量分析

邓迎春1,李满1,黄娅2,周杰明1,*()   

  1. 1 计算与随机数学教育部重点实验室 & 湖南师范大学数学与统计学院 长沙 410081
    2 湖南师范大学商学院 长沙 410081
  • 收稿日期:2018-12-24 出版日期:2020-04-26 发布日期:2020-05-21
  • 通讯作者: 周杰明 E-mail:jmzhou@hunnu.edu.cn
  • 基金资助:
    湖南省哲学社会科学基金(17YBA290)

On the Analysis of Ruin-Related Quantities in the Nonhomogeneous Compound Poisson Risk Model

Yingchun Deng1,Man Li1,Ya Huang2,Jieming Zhou1,*()   

  1. 1 Key Laboratory of Computing and Stochastic Mathematics(Ministry of Education) & School of Mathematics and Statistics, Hunan Normal University, Changsha 410081
    2 School of Business, Hunan Normal University, Changsha 410081
  • Received:2018-12-24 Online:2020-04-26 Published:2020-05-21
  • Contact: Jieming Zhou E-mail:jmzhou@hunnu.edu.cn
  • Supported by:
    the Philosophy and Social Science Fund of Hunan Province(17YBA290)

摘要:

该文将经典风险模型推广到非时齐复合Poisson风险模型.首先,运用经典方法和时变方法,计算了该模型下的破产特征量,且得到了更新方程的解析表达式.其次,定义了时变后相应模型的一个广义的Gerber-Shiu函数,验证了时变方法对非时齐Poisson风险模型的有效性.最后,当单次索赔量服从指数分布时,计算了相应的破产概率和Gerber-Shiu函数.

关键词: 破产概率, 时变方法, 非时齐Poisson过程, Gerber-Shiu函数, 更新方程

Abstract:

In this paper, the classical risk model is extended to nonhomogeneous compound Poisson risk model. Firstly, both the classical method and the time-varying method are used to calculate the ruin-related quantities for this model, and the analytical expression of the renewal equation is obtained. Secondly, for the time-varying model, the generalized Gerber-Shiu function is defined, which is to verify the effectiveness of the time-varying method for the nonhomogeneous compound Poisson risk model. Finally, when each claim follows an exponentially distribution, the corresponding ruin probability and Gerber-Shiu function are calculated.

Key words: Ruin probability, Time-varying method, Nonhomogeneous Poisson process, Gerber-Shiu function, Renewal equation

中图分类号: 

  • O211.6