1 |
Lundberg F . On the theory of reinsurance. Transactions Ⅵ International Congress of Actuaries, 1909, 1, 877- 948
|
2 |
Cramér H. On the Mathematical Theory of Risk. Stockholm: Skandia Jubilee Volume, 1930
|
3 |
Cramér H. Collective Risk Theory: Asurvey of the Theory from the Point of View of the Theory of Stochastic Processes. Stockholm: Nordiska Bokhandeln, 1955
|
4 |
Yuen K C , Guo J Y . Ruin probabilities for time-correlated claims in the compound binomial model. Insurance Mathematics and Economics, 2001, 29 (1): 47- 57
doi: 10.1016/S0167-6687(01)00071-3
|
5 |
Gerber U , Yang H L . Absolute ruin probabilities in a jump diffusion model with investment. North American Actuarial Journal, 2007, 11 (3): 159- 169
doi: 10.1080/10920277.2007.10597474
|
6 |
Li J C , Dickson D C M , Li S M . Some ruin problems for the MAP risk model. Insurance Mathematics and Economics, 2015, 65, 1- 8
doi: 10.1016/j.insmatheco.2015.08.001
|
7 |
Li J C , Dickson D C M , Li S M . Analysis of some ruin-related quantities in a Markov-modulated risk model. Stochastic Models, 2016, 32 (3): 351- 365
doi: 10.1080/15326349.2015.1121399
|
8 |
Liu R F , Wang D , Peng J . Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial and Management Optimization, 2017, 13 (2): 995- 1007
doi: 10.3934/jimo.2016058
|
9 |
Li J Z . The infinite-time ruin probability for a bidimensional renewal risk model with constant force of interest and dependent claims. Communications in Statistics-Theory and Methods, 2017, 46 (4): 1959- 1971
doi: 10.1080/03610926.2015.1030428
|
10 |
尹传存. 关于破产概率的一个局部定理. 中国科学(A辑), 2004, 34 (2): 192- 202
|
|
Yin C C . A local theorem about the ruin probability. Science in China Series A, 2004, 34 (2): 192- 202
|
11 |
刘艳, 胡亦钧. 马氏环境下带扰动的Cox相关的风险模型破产概率的上界估计. 数学年刊, 2004, 25 (5): 579- 586
|
|
Liu Y , Hu Y J . Upper bound estimation on the ruin probability for a cox correlated risk model disturbed by diffusion in a markovian environment. Chinese Journal of Contemporary Mathematies, 2004, 25 (5): 579- 586
|
12 |
Konstantinides D , Tang Q H , Tsitsiashvili G . Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails. Insurance Mathematics and Economics, 2002, 31 (3): 447- 460
doi: 10.1016/S0167-6687(02)00189-0
|
13 |
唐启鹤. 重尾索赔下关于破产概率的一个等价式. 中国科学(A辑), 2002, 32 (3): 260- 266
|
|
Tang Q H . An equivalent formula of the ruin probability under a heavy tail claim. Science China Series A, 2002, 32 (3): 260- 266
|
14 |
郭风龙, 王定成, 张维. 考虑随机投资收益和单边线性索赔的时间依赖更新风险模型的破产概率. 中国科学(A辑), 2016, 46A (3): 321- 350
|
|
Guo F L , Wang D C , Zhang W . Ruin probability of renewal risk model with stochastic investment returns and one-sided linear time-dependent claims. Science China Series A, 2016, 46A (3): 321- 350
|
15 |
Wang L . Asymptotic behavior of finite-time ruin probability in a by-claim risk model with constant interest rate. Journal of Mathematics and Statistics, 2014, 10 (3): 339- 357
|
16 |
Xie J H , Zou W . Dividend barrier and ruin problems for a risk model with delayed claims. Communications in Statistics-Theory and Methods, 2017, 46 (14): 7063- 7084
doi: 10.1080/03610926.2016.1143010
|
17 |
Constantinescu C , Samorodnitsky G , Zhu W . Ruin probabilities in classical risk models with gamma claims. Scandinavian Actuarial Journal, 2018, 2018 (7): 555- 575
doi: 10.1080/03461238.2017.1402817
|
18 |
Oshime T , Shimizu Y . Parametric inference for ruin probability in the classical risk model. Statistics and Probability Letters, 2018, 133, 28- 37
doi: 10.1016/j.spl.2017.09.020
|
19 |
Gerber U , Shiu S . On the time value of ruin. North American Actuarial Journal, 1998, 2 (1): 48- 72
doi: 10.1080/10920277.1998.10595671
|
20 |
Lin X S , Willmot G E . Analysis of a defective renewal equation arising in ruin theory. Insurance Mathematics and Economics, 1999, 25 (1): 63- 84
doi: 10.1016/S0167-6687(99)00026-8
|
21 |
Lin X S , Willmot G E , Drekic S . The classical risk model with a constant dividend barrier:analysis of the Gerber-Shiu discounted penalty function. Insurance Mathematics and Economics, 2004, 33 (3): 551- 566
|
22 |
Albrecher H , Boxma O J . A ruin model with dependence between claim sizes and claim intervals. Insurance Mathematics and Economics, 2004, 35 (2): 245- 254
doi: 10.1016/j.insmatheco.2003.09.009
|
23 |
Albrecher H , Boxma O J . On the discounted penalty function in a Markov-dependent risk model. Insurance Mathematics and Economics, 2005, 37 (3): 650- 672
doi: 10.1016/j.insmatheco.2005.06.007
|
24 |
Albrecher H , Cheung E C K , Thonhauser S . Randomized observation periods for the compound Poisson risk model:the discounted penalty function. Scandinavian Actuarial Journal, 2013, 2013 (6): 424- 452
doi: 10.1080/03461238.2011.624686
|
25 |
Zhang Z M , Su W . A new efficient method for estimating the Gerber-Shiu function in the classical risk model. Scandinavian Actuarial Journal, 2018, 2018 (5): 426- 449
doi: 10.1080/03461238.2017.1371068
|
26 |
Willmot G E, Woo J K. Gerber-Shiu analysis in the classical Poisson risk model//Willmot G E, Woo J K. Surplus Analysis of Sparre Andersen Insurance Risk Processes. New York: Springer, 2017: 45-59
|
27 |
Zhang Z M , Yang Y , Liu C L . On a perturbed compound Poisson model with varying premium rates. Journal of Industrial and Management Optimization, 2017, 13 (2): 721- 736
doi: 10.3934/jimo.2016043
|
28 |
Li S L , Yin C C , Zhao X , Dai H S . Stochastic interest model based on compound Poisson process and applications in actuarial science. Mathematical Problems in Engineering, 2017, 2, 1- 8
|
29 |
韦晓, 于金酉, 胡亦钧. 变保费率扰动风险模型的有限时间破产概率和大偏差. 数学物理学报, 2007, 27A (4): 616- 623
|
|
Wei X , Yu J Y , Hu Y J . Large deviations and finite time ruin probability for perturbed risk model with variable premium rate(in Chinese). Acta Mathematica Scientia, 2007, 27A (4): 616- 623
|
30 |
Picard P . A nonhomogeneous risk model for insurance. Computers and Mathematics with Applications, 2006, 51 (2): 325- 334
doi: 10.1016/j.camwa.2005.11.005
|
31 |
Kartashov M . Inhomogeneous perturbations of a renewal equation and the Cramér-Lundberg theorem for a risk process with variable premium rates. Theory of Probability and Mathematical Statistics, 2009, 78, 61- 73
doi: 10.1090/S0094-9000-09-00762-5
|
32 |
Kartashov M . Boundedness, limits, and stability of solutions of a perturbation of a nonhomogeneous renewal equation on a semiaxis. Theory of Probability and Mathematical Statistics, 2010, 81, 71- 83
doi: 10.1090/S0094-9000-2010-00811-8
|
33 |
Blaževičius K , Bieliauskieně E , Šiaulys J . Finite-time ruin probability in the inhomogeneous claim case. Lithuanian Mathematical Journal, 2010, 50 (3): 260- 270
doi: 10.1007/s10986-010-9084-2
|
34 |
Bieliauskieně E , Šiaulys J . Infinite time ruin probability in inhomogeneous claims case. Lietuvos Matematikos Rinkinys, 2010, 51, 352- 356
|
35 |
Andrulyt I M , Bernackait E , Kievinait D , Šiaulys J . A Lundberg-type inequality for an inhomogeneous renewal risk model. Modern Stochastics:Theory and Applications, 2015, 2 (2): 173- 184
|
36 |
Abaurrea J , Asín J , Cebrián A C . Modeling and projecting the occurrence of bivariate extreme heat events using a non-homogeneous common Poisson shock process. Stochastic Environmental Research and Risk Assessment, 2015, 29 (1): 309- 322
|
37 |
Bernackaitě E , Šiaulys J . The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial and Management Optimization, 2017, 13 (1): 207- 222
doi: 10.3934/jimo.2016012
|
38 |
张波, 张景肖. 应用随机过程. 北京: 清华大学出版社, 2004: 42- 45
|
|
Zhang B , Zhang J X . Applying Stochastic Processes. Beijing: Tsinghua University Press, 2004: 42- 45
|
39 |
杨琴, 陈云. 基于泊松过程的供应链复杂网络模型. 系统工程, 2012, 30 (9): 57- 62
|
|
Yang Q , Chen Y . Supply chain complex network model based on poisson process. Systems Engineering, 2012, 30 (9): 57- 62
|
40 |
Albrecher H , Boxma O O , Essifi R R , Kuijstermans R . A queuing model with a randomized depletion of inventory. Probability in the Engineering and Informational Sciences, 2017, 31 (1): 43- 59
doi: 10.1017/S0269964816000322
|