1 |
Storn R , Price K . Differential evolution -a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359
|
2 |
Yuan X , Cao B , Yang B , et al. A modified differential evolution for constrained optimization. Information Computing and Automation, 2008, 3, 19- 22
|
3 |
Qing A. Advances in Differential Evolution. Germany: Springer Berlin Heidelberg, 2008
|
4 |
Rönkkönen J , Kukkonen S , Price K V . Real-parameter optimization with differential evolution. IEEE Congress on Evolutionary Computation, 2005, 1 (1): 506- 513
|
5 |
Price K, Storn R M, Lampinen J A. Differential Evolution: A Practical Approach to Global Optimization. Germany: Springer Science and Business Media, 2006
|
6 |
王凯光, 高岳林. 十进制整数编码的DE算法模式集定理研究. 应用数学, 2019, 32 (02): 443- 451
|
|
Wang K G , Gao Y L . The schema sets theorem of DE algorithm for decimal integer coding. Mathematica Applicata, 2019, 32 (02): 443- 451
|
7 |
Qin A K , Huang V L , Suganthan P N . Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE transactions on Evolutionary Computation, 2008, 13 (2): 398- 417
|
8 |
Das S , Suganthan P N . Differential evolution:a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 2011, 15 (1): 4- 31
|
9 |
Storn R . System design by constraint adaptation and differential evolution. IEEE Transactions on Evolutionary Computation, 1999, 3 (1): 22- 34
|
10 |
Thosen R. Flexible Ligand Docking Using Differential Evolution[C]//Proceedings of the 2003 IEEE Congress on Evolutionary Computation. Canberra, Australia, 2003, 4: 2354-2361
|
11 |
Yang M , Li C H , Cai Z H , et al. Differential evolution with auto-enhanced population diversity. IEEE Transactions on Cybernetics, 2015, 45 (2): 302- 315
|
12 |
Lin T , Zha H . Riemannian manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 (5): 796- 809
|
13 |
汪容. 数学物理中的微分几何与拓扑学. 杭州: 浙江大学出版社, 2010
|
|
Wang R . Differential Geometry and Topology in Mathematical Physic. Hangzhou: Zhejiang University Press, 2010
|
14 |
Busch P , Heinonen T , Lahti P . Heisenberg's uncertainty principle. Physics Reports, 2007, 452 (6): 155- 176
|
15 |
Moshinsky M , Quesne C . Linear canonical transformations and their unitary representations. Journal of Mathematical Physics, 1971, 12 (8): 1772- 1780
|
16 |
Zhao J , Tao R , Wang Y . On signal moments and uncertainty relations associated with linear canonical transform. Signal Processing, 2010, 90 (9): 2686- 2689
|
17 |
庞学诚, 等. 数学分析(第四版·上). 北京: 高等教育出版社, 2001
|
|
Pang X C , et al. Mathematical Analysis (Fourth Edition Part I). Beijing: Higher Education Press, 2001
|
18 |
Bracewell R N , Bracewell R N . The Fourier Transform and Its Applications. New York: McGraw-Hill, 1986
|
19 |
Wang K G , Gao Y L . Topology structure implied in β-Hilbert space, Heisenberg uncertainty quantum characteristics and numerical simulation of the DE algorithm. Mathematics, 2019, 7 (4): 330- 349
|