1 |
Date E, Jimbo M, Kashiwara M, Miwa T. Transformation Groups for Soliton Equations//Stone M. Nonlinear Inregrable Systems-Classical and Quantum Theory. Singapore:World Scientific, 1983:427-507
|
2 |
Dickey L A. Soliton Equations and Hamiltonian Systems. Singapore:World Scientific, 2003
|
3 |
Cheng Y , Li Y S . The constraint of the KP equation and its special solutions. Phys Lett A, 1991, 157, 22- 26
|
4 |
Konopelchenko B , Sidorenko J , Strampp W . (1+1)-Dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems. Phys Lett A, 1999, 157, 17- 21
|
5 |
Cheng Y . Constraints of the KP hierarchy. J Math Phys, 1992, 33, 3774- 3782
|
6 |
Cheng J P . The integral type gauge transformation and the additional symmetry for the constrained KP hierarchy. Acta Math Sci, 2015, 35B, 1111- 1121
|
7 |
Gao X , Li C Z , He J S . Recursion relations for the constrained multi-component KP hierarchy. Acta Math Sin, 2017, 33, 1578- 1586
|
8 |
Aratyn H , Nissimov E , Pacheva S . Virasoro symmetry of constrained KP hierarchies. Phys Lett A, 1997, 288, 164- 175
|
9 |
Sidorenko J , Strampp W . Symmetry constraints of the KP hierarchy. Inverse Problems, 1991, 7, L37- L43
|
10 |
Kashiwara M , Miwa T . The τ function of the Kadomtsev-Petviashvili equation transfromation groups for soliton equations, I. Proc Japan Acad A, 1981, 57, 342- 347
|
11 |
Jimbo M , Miwa T . Solitons and infinite dimensional Lie algebras. Publ RIMS Kyoto Univ, 1983, 19, 943- 1001
|
12 |
Oevel W , Rogers C . Gauge transformations and reciprocal links in 2+1 dimensions. Rev Math Phys, 1993, 5, 299- 330
|
13 |
Kupershmidt B A . Mathematics of dispersive water waves. Commun Math Phys, 1985, 99, 51- 73
|
14 |
Kiso K . A remark on the commuting flows defined by Lax equations. Prog Theo Phys, 1990, 83, 1108- 1125
|
15 |
Shaw J C , Tu M H . Miura and auto-Backlund transformations for the cKP and cmKP hiearchies. J Math phys, 1997, 38, 5756- 5773
|
16 |
Shaw J C , Yen Y C . Miura and Backlund transformations for hierarchies of integrable equations. Chin J Phys, 1993, 31, 709- 719
|
17 |
Cheng J P , Li M H , Tian K L . On the modified KP hierarchy:tau functions, squared eigenfunction symmetries and additional symmetries. J Geom Phys, 2018, 134, 19- 37
|
18 |
Cheng J P . The gauge transformation of the modified KP hierarchy. J Nonlin Math Phys, 2018, 25, 66- 85
|
19 |
Oevel W , Carillo S . Squared eigenfunction symmetries for soliton equations:Part I. J Math Anal Appl, 1998, 217, 161- 178
|
20 |
Oevel W , Carillo S . Squared eigenfunction symmetries for soliton equations:Part II. J Math Anal Appl, 1998, 217, 179- 199
|
21 |
Oevel W . Darboux theorems and Wronskian formulas for intergrable system I:Constrained KP flows. Phys A, 1993, 195, 533- 576
|
22 |
Aratyn H , Nissimov E , Pacheva S . Method of squared eigenfunction potentials in integrable hierarchies of KP type. Commun Math Phys, 1998, 193, 493- 525
|
23 |
Adler M , Shiota T , Van Moerbeke P . A Lax representation for the vertex operator and the central extension. Commun Math Phys, 1995, 171, 547- 588
|
24 |
Dickey L A . On additional symmetries of the KP hierarchy and Sato's Backlund transformation. Commun Math Phys, 1995, 167, 227- 233
|
25 |
Liu X J , Zeng Y B , Lin R L . A new extended KP hierarchy. Phys Lett A, 2008, 372, 3819- 3823
|
26 |
Liu X J , Zeng Y B , Lin R L . An extended two-dimensional Toda lattice hierarchy and two-dimensional Toda lattice with self-consistent sources. J Math Phys, 2008, 49, 093506
|
27 |
Cheng J P , He J S , Hu S . The "ghost" symmetry the BKP hierarchy. J Math Phys, 2010, 51, 053514
|
28 |
Cheng J P , He J S . On the squared eigenfunction symmetry of the Toda lattice hierarchy. J Math Phys, 2013, 54, 023511
|
29 |
Cheng J P , He J S . Squared eigenfunction symmetries for the BTL and CTL hierarchies. Commun Theor Phys, 2013, 59, 131- 136
|
30 |
Miura R M . Korteweg-de Vries equation and generalizations I:A remarkable explicit nonlinear transformation. J Math Phys, 1968, 9, 1202- 1204
|
31 |
Cheng J P . Miura and auto-Backlund transformations for the q-deformed KP and q-deformed modified KP hierarchies. J Nonlin Math Phys, 2017, 1, 7- 19
|
32 |
Konopelchenko B G . On the gauge-invariant description of the evolution equations integrable by Gelfand-Dikij spectral problems. Phys Lett A, 1982, 92, 323- 327
|
33 |
Kupershmidt B A . Canonical property of the Miura maps between the MKP and KP hierarchies, Continuous and Discrete. Commun Math Phys, 1995, 167, 351- 371
|