1 |
Ansari Q H , Oettli W , Schläger D . A generalization of vectorial equilibria. Math Method Oper Res, 1997, 46 (2): 147- 152
|
2 |
Chadli O , Chiang Y , Huang S . Topological pseudomonotonicity and vector equilibrium problems. J Math Anal Appl, 2002, 270 (2): 435- 450
|
3 |
Li J , Huang N J , Kim J . On implicit vector equilibrium problems. J Math Anal Appl, 2003, 283 (2): 501- 512
|
4 |
Farajzadeh A P , Amini-Harandi A . On the generalized vector equilibrium problems. J Math Anal Appl, 2008, 344 (2): 999- 1004
|
5 |
Capǎtǎ A . Exisrence results for globally efficient solutions of vector equilibrium problems via a generalized KKM principle. Acta Math Sci, 2017, 37 (2): 463- 476
doi: 10.1016/S0252-9602(17)30014-0
|
6 |
Ansari Q H , Konnov I V , Yao J C . On generalized vector equilibrium problems. Acta Math Appl Sin, 2006, 47 (1): 543- 554
|
7 |
Ansari Q H , Schaible S , Yao J C . The system of generalized vector equilibrium problems with applications. J Global Optim, 2002, 22 (1/4): 3- 16
|
8 |
Ansari Q H , Flores-Bazan F . Generalized vector quasi-equilibrium problems with applications. J Math Anal Appl, 2003, 277 (1): 246- 256
doi: 10.1016/S0022-247X(02)00535-8
|
9 |
Lashkaripour R , Karamian A . On a new generalized symmetric vector equilibrium problem. J Inequal Appl, 2017, 2017 (1): 237
|
10 |
Bianchi M , Kassay G , Pini R . Ekeland's principle for vector equilibrium problems. Nonlinear Analysis, 2007, 66 (7): 1454- 1464
|
11 |
Gong X . Ekeland's principle for set-valued vector equilibrium problems. Acta Math Sci, 2014, 34 (4): 1179- 1192
|
12 |
Gutiérrez C , Kassay G , Novo V , Ródenas-Pedregosa J L . Ekeland variational principles in vector equilibrium problems. SIAM J Optimiz, 2017, 27 (4): 2405- 2425
doi: 10.1137/17M111883X
|
13 |
Göpfert A , Riahi H , Tammer C , et al. Variational Methods in Partially Ordered Spaces. New York: Springer, 2003
|
14 |
Nishimura H , Ok E A . Solvability of variational inequalities on Hilbert lattices. Math Oper Res, 2012, 37 (4): 608- 625
|
15 |
Xie L , Li J , Yang W . Order-clustered fixed point theorems on chain-complete preordered sets and their applications to extended and generalized Nash equilibria. Fixed Point Theory A, 2013, 2013 (1): 192
|
16 |
Zhang C , Wang Y . Applications of order-theoretic fixed points theorems to discontinuous quasi-equilibrium problems. Fixed Point Theory A, 2015, 2015: 54
doi: 10.1186/s13663-015-0306-5
|
17 |
Meyer-Nieberg P . Banach Lattices. Berlin: Springer-Verlag, 1991
|
18 |
Löhne A . Vector Optimization with Infimum and Supremum. Heidelberg: Springer, 2011
|
19 |
Kukushkin N S . Increasing selections from increasing multifunctions. Order, 2013, 30 (2): 541- 555
|
20 |
Li J . Several extensions of the Abian-Brown fixed point theorem and their applications to extended and generalized Nash equilibria on chain-complete posets. J Math Anal Appl, 2014, 409 (2): 1084- 1092
doi: 10.1016/j.jmaa.2013.07.070
|
21 |
Smithson R E . Fixed points of order preserving multifunctions. Proc Amer Math Soc, 1971, 28 (1): 304- 310
|
22 |
Abian S , Brown A B . A theorem on partially ordered sets, with applications to fixed point theorems. Can J Math, 1961, 13: 78- 82
|
23 |
Tarski A . A lattice-theoretical fixpoint theorem and its applications. Pac J Math, 1955, 5 (2): 285- 309
|
24 |
Wang Y , Zhang C . Order-preservations of solution correspondence for parametric generalized variational inequalities on Banach lattices. Fixed Point Theory and Applications, 2015, 2015: 108
doi: 10.1186/s13663-015-0360-z
|