1 |
Bebernes J , Eberly D . Mathematical Problems from Combustion Theory. New York: Springer-Verlag, 1989
|
2 |
Kardar M , Parisi G , Zhang Y C . Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56 (9): 889- 892
doi: 10.1103/PhysRevLett.56.889
|
3 |
Gelfand I M . Some problems in the theory of quasi-linear equations. Uspekhi Matematicheskikh Nauk, 1959, 14 (2): 87- 158
|
4 |
Chandrasekhar S . An Introduction to the Study of Stellar Structure. New York: Dover Publ Inc, 1967
|
5 |
Keller H B , Cohen D S . Some positone problems suggested by nonlinear heat generation. J Math Mech, 1967, 16 (12): 1361- 1376
|
6 |
Caglioti E , Lions P L , Marchioro C , Pulvirenti M . A special class of stationary flows for two-dimensional Euler equations:a statistical mechanics description. Comm Math Phys, 1992, 143 (3): 501- 525
doi: 10.1007/BF02099262
|
7 |
Kazdan J L , Warner F W . Curvature functions for compact 2-manifolds. Annals of Math, 1974, 99 (1): 14- 47
doi: 10.2307/1971012
|
8 |
Straughan B . Explosive Instabilities in Mechanics. Berlin: Springer, 1998
|
9 |
Fila M . Blow-up of solutions of supercritical parabolic equations. Handb Differ Equ:Evolutionary Equations, 2005, 2: 105- 158
|
10 |
Quittner R , Souplet P . Superlinear Parabolic Problems:Blow-up, Global Existence and Steady States. Basel: Birkhauser, 2007
|
11 |
Hu B . Blow-up Theories for Semilinear Parabolic Equations. Berlin: Springer, 2011
|
12 |
Bandle C , Brunner H . Blow-up in diffusion equations:A survey. J Comput Appl Math, 1998, 97 (1): 3- 22
|
13 |
Levine H A . The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32 (2): 262- 288
doi: 10.1137/1032046
|
14 |
Levine H A . Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:the method of unbounded Fourier coefficients. Math Ann, 1975, 214 (3): 205- 220
doi: 10.1007/BF01352106
|
15 |
Lv X S , Song X F . Bounds of the blowup time in parabolic equations with weighted source under nonhomogeneous Neumann boundary condition. Math Meth Appl Sci, 2014, 37 (7): 1019- 1028
doi: 10.1002/mma.2859
|
16 |
Song X F , Lv X S . Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source. Appl Math Comput, 2014, 236: 78- 92
|
17 |
Ma L W , Fang Z B . Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux. Nonlinear Anal RWA, 2016, 32: 338- 354
doi: 10.1016/j.nonrwa.2016.05.005
|
18 |
Ma L W , Fang Z B . Blow-up phenomena for a semilinear parabolic equation with weighted inner absorption under nonlinear boundary flux. Math Meth Appl Sci, 2017, 40 (1): 115- 128
doi: 10.1002/mma.3971
|
19 |
Ma L W , Fang Z B . Blow-up analysis for a nonlocal reaction-diffusion equation with robin boundary conditions. Taiwanese J Math, 2017, 21 (1): 131- 150
doi: 10.11650/tjm.21.2017.7380
|
20 |
Ma L W , Fang Z B . Lower bound of the blow-up time for reaction-diffusion equation with weighted nonlocal source and robin boundary conditions. Math Phys, 2017, 37A (1): 146- 157
|
21 |
Xiao S , Fang Z B . Blow-up phenomena for a porous medium equation with time-dependent coefficients and inner absorption term under nonlinear boundary flux. Taiwanese J Math, 2018, 22 (2): 349- 369
doi: 10.11650/tjm/170802
|
22 |
Ma L W , Fang Z B . Bounds for blow-up time of a reaction-diffusion equation with weighted gradient nonlinearity. Comput Math Appl, 2018, 76 (3): 508- 519
doi: 10.1016/j.camwa.2018.04.033
|
23 |
Payne L E , Philippin G A . Blow-up phenomena in parabolic problems with time-dependent coefficients under Neumann boundary conditions. Proc Roy Soc Edinburgh Sec, 2012, 142 (3): 625- 631
doi: 10.1017/S0308210511000485
|
24 |
Payne L E , Philippin G A . Blow-up phenomena in parabolic problems with time-dependent coefficients under Dirichlet boundary conditions. Proc Am Math Soc, 2013, 141 (7): 2309- 2318
doi: 10.1090/S0002-9939-2013-11493-0
|
25 |
Fang Z B , Wang Y X . Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Z Angew Math Phys, 2015, 66 (5): 1- 17
|
26 |
Liu Z Q , Fang Z B . Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete Contin Dyn Syst Ser, 2016, 21 (10): 3619- 3635
doi: 10.3934/dcdsb.2016113
|
27 |
Wang Y X, Fang Z B. Lower bounds for blow-up time in nonlocal parabolic problem under Robin boundary conditions. Accepted in Appl Anal, 2018, DOI: org/10.1080/00036811. 2018.1424329
|
28 |
Tello J I . Stability of steady states of the Cauchy problem for the exponential reaction-diffusion equation. J Math Anal Appl, 2006, 324 (1): 381- 396
doi: 10.1016/j.jmaa.2005.12.011
|
29 |
Pulkkinen A . Blow-up profiles of solutions for the exponential reaction-diffusion equation. Math Methods Appl Sci, 2011, 34 (16): 2011- 2030
doi: 10.1002/mma.1501
|
30 |
Ioku N . The Cauchy problem for heat equations with exponential nonlinearity. J Differential Equations, 2011, 251 (4/5): 1172- 1194
|
31 |
Zhang H W , Dong H L , Qing Y H . Existence and nonexistence of global solution for a reaction-diffusion equation with exponential nonlinearity. WSEAS Trans Math, 2013, 12 (12): 1232- 1240
|
32 |
Dai H Y , Zhang H W . Energy decay and nonexistence of solution for a reaction-diffusion equation with exponential nonlinearity. Bound Value Probl, 2014, 2014: 70
doi: 10.1186/1687-2770-2014-70
|
33 |
Ma L W , Fang Z B . Blow-up phenomena of solutions for a reaction-diffusion equation with weighted exponential nonlinearity. Comput Math Appl, 2018, 75 (8): 2735- 2745
doi: 10.1016/j.camwa.2018.01.005
|
34 |
Payne L E , Song J C . Lower bounds for blow-up in a model of chemotaxis. J Math Anal Appl, 2012, 385 (2): 672- 676
doi: 10.1016/j.jmaa.2011.06.086
|
35 |
Xu X J , Ye Z . Life span of solutions with large initial data for a class of coupled parabolic systems. Z Angew Math Phys, 2013, 64 (3): 705- 717
doi: 10.1007/s00033-012-0255-3
|
36 |
Payne L E , Philippin G A . Blow-up phenomena for a class of parabolic systems with time dependent coefficients. Appl Math, 2012, 3 (4): 325- 330
doi: 10.4236/am.2012.34049
|
37 |
Tao X Y , Fang Z B . Blow-up phenomena for a nonlinear reaction-diffusion system with time dependent coefficients. Comput Math Appl, 2017, 74 (10): 2520- 2528
doi: 10.1016/j.camwa.2017.07.037
|
38 |
Bao A G , Song X F . Bounds for the blowup time of the solution to a parabolic system with nonlocal factors in nonlinearities. Comput Math Appl, 2016, 71 (3): 723- 729
doi: 10.1016/j.camwa.2015.12.029
|
39 |
Wang N , Song X F , Lv X S . Estimates for the blowup time of a combustion model with nonlocal heat sources. J Math Anal Appl, 2016, 436 (2): 1180- 1195
doi: 10.1016/j.jmaa.2015.12.025
|
40 |
Kanel J I , Kirane M . Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth. J Differential Equations, 2000, 165 (1): 24- 41
doi: 10.1006/jdeq.2000.3769
|
41 |
肖峰. 一类大初值抛物方程组解的生命周期. 数学物理学报, 2016, 36A (4): 672- 680
doi: 10.3969/j.issn.1003-3998.2016.04.006
|
|
Xiao F . Life span of solutions for a class of parabolic system with large initial date. Acta Math Sci, 2016, 36A (4): 672- 680
doi: 10.3969/j.issn.1003-3998.2016.04.006
|
42 |
Ghoul T E , Zaag H . Blowup solutions for a reaction-diffusion system with exponential nonlinearities. J Differential Equations, 2018, 264 (12): 7523- 7579
doi: 10.1016/j.jde.2018.02.022
|