数学物理学报 ›› 2019, Vol. 39 ›› Issue (6): 1456-1475.
收稿日期:
2018-09-27
出版日期:
2019-12-26
发布日期:
2019-12-28
通讯作者:
方钟波
E-mail:madanni777@sina.com;fangzb7777@hotmail.com
作者简介:
马丹旎, E-mail: 基金资助:
Received:
2018-09-27
Online:
2019-12-26
Published:
2019-12-28
Contact:
Zhongbo Fang
E-mail:madanni777@sina.com;fangzb7777@hotmail.com
Supported by:
摘要:
该文研究了具有耦合指数反应项的变系数扩散方程组Dirichlet初边值问题的爆破现象.结合伯努利方程技巧和构造上下解方法以及修正微分不等式技巧,找到了变系数对整体解和爆破解的存在性的影响,且在整体空间中(N ≥ 1)导出了若干个不同测度意义下爆破解的爆破时间界的估计值.
中图分类号:
马丹旎,方钟波. 具有耦合指数反应项的变系数扩散方程组解的爆破现象[J]. 数学物理学报, 2019, 39(6): 1456-1475.
Danni Ma,Zhongbo Fang. Blow-Up Phenomenon for a Coupled Diffusion System with Exponential Reaction Terms and Space-Dependent Coefficients[J]. Acta mathematica scientia,Series A, 2019, 39(6): 1456-1475.
1 | Bebernes J , Eberly D . Mathematical Problems from Combustion Theory. New York: Springer-Verlag, 1989 |
2 |
Kardar M , Parisi G , Zhang Y C . Dynamic scaling of growing interfaces. Phys Rev Lett, 1986, 56 (9): 889- 892
doi: 10.1103/PhysRevLett.56.889 |
3 | Gelfand I M . Some problems in the theory of quasi-linear equations. Uspekhi Matematicheskikh Nauk, 1959, 14 (2): 87- 158 |
4 | Chandrasekhar S . An Introduction to the Study of Stellar Structure. New York: Dover Publ Inc, 1967 |
5 | Keller H B , Cohen D S . Some positone problems suggested by nonlinear heat generation. J Math Mech, 1967, 16 (12): 1361- 1376 |
6 |
Caglioti E , Lions P L , Marchioro C , Pulvirenti M . A special class of stationary flows for two-dimensional Euler equations:a statistical mechanics description. Comm Math Phys, 1992, 143 (3): 501- 525
doi: 10.1007/BF02099262 |
7 |
Kazdan J L , Warner F W . Curvature functions for compact 2-manifolds. Annals of Math, 1974, 99 (1): 14- 47
doi: 10.2307/1971012 |
8 | Straughan B . Explosive Instabilities in Mechanics. Berlin: Springer, 1998 |
9 | Fila M . Blow-up of solutions of supercritical parabolic equations. Handb Differ Equ:Evolutionary Equations, 2005, 2: 105- 158 |
10 | Quittner R , Souplet P . Superlinear Parabolic Problems:Blow-up, Global Existence and Steady States. Basel: Birkhauser, 2007 |
11 | Hu B . Blow-up Theories for Semilinear Parabolic Equations. Berlin: Springer, 2011 |
12 | Bandle C , Brunner H . Blow-up in diffusion equations:A survey. J Comput Appl Math, 1998, 97 (1): 3- 22 |
13 |
Levine H A . The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32 (2): 262- 288
doi: 10.1137/1032046 |
14 |
Levine H A . Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:the method of unbounded Fourier coefficients. Math Ann, 1975, 214 (3): 205- 220
doi: 10.1007/BF01352106 |
15 |
Lv X S , Song X F . Bounds of the blowup time in parabolic equations with weighted source under nonhomogeneous Neumann boundary condition. Math Meth Appl Sci, 2014, 37 (7): 1019- 1028
doi: 10.1002/mma.2859 |
16 | Song X F , Lv X S . Bounds for the blowup time and blowup rate estimates for a type of parabolic equations with weighted source. Appl Math Comput, 2014, 236: 78- 92 |
17 |
Ma L W , Fang Z B . Blow-up analysis for a reaction-diffusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux. Nonlinear Anal RWA, 2016, 32: 338- 354
doi: 10.1016/j.nonrwa.2016.05.005 |
18 |
Ma L W , Fang Z B . Blow-up phenomena for a semilinear parabolic equation with weighted inner absorption under nonlinear boundary flux. Math Meth Appl Sci, 2017, 40 (1): 115- 128
doi: 10.1002/mma.3971 |
19 |
Ma L W , Fang Z B . Blow-up analysis for a nonlocal reaction-diffusion equation with robin boundary conditions. Taiwanese J Math, 2017, 21 (1): 131- 150
doi: 10.11650/tjm.21.2017.7380 |
20 | Ma L W , Fang Z B . Lower bound of the blow-up time for reaction-diffusion equation with weighted nonlocal source and robin boundary conditions. Math Phys, 2017, 37A (1): 146- 157 |
21 |
Xiao S , Fang Z B . Blow-up phenomena for a porous medium equation with time-dependent coefficients and inner absorption term under nonlinear boundary flux. Taiwanese J Math, 2018, 22 (2): 349- 369
doi: 10.11650/tjm/170802 |
22 |
Ma L W , Fang Z B . Bounds for blow-up time of a reaction-diffusion equation with weighted gradient nonlinearity. Comput Math Appl, 2018, 76 (3): 508- 519
doi: 10.1016/j.camwa.2018.04.033 |
23 |
Payne L E , Philippin G A . Blow-up phenomena in parabolic problems with time-dependent coefficients under Neumann boundary conditions. Proc Roy Soc Edinburgh Sec, 2012, 142 (3): 625- 631
doi: 10.1017/S0308210511000485 |
24 |
Payne L E , Philippin G A . Blow-up phenomena in parabolic problems with time-dependent coefficients under Dirichlet boundary conditions. Proc Am Math Soc, 2013, 141 (7): 2309- 2318
doi: 10.1090/S0002-9939-2013-11493-0 |
25 | Fang Z B , Wang Y X . Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Z Angew Math Phys, 2015, 66 (5): 1- 17 |
26 |
Liu Z Q , Fang Z B . Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete Contin Dyn Syst Ser, 2016, 21 (10): 3619- 3635
doi: 10.3934/dcdsb.2016113 |
27 | Wang Y X, Fang Z B. Lower bounds for blow-up time in nonlocal parabolic problem under Robin boundary conditions. Accepted in Appl Anal, 2018, DOI: org/10.1080/00036811. 2018.1424329 |
28 |
Tello J I . Stability of steady states of the Cauchy problem for the exponential reaction-diffusion equation. J Math Anal Appl, 2006, 324 (1): 381- 396
doi: 10.1016/j.jmaa.2005.12.011 |
29 |
Pulkkinen A . Blow-up profiles of solutions for the exponential reaction-diffusion equation. Math Methods Appl Sci, 2011, 34 (16): 2011- 2030
doi: 10.1002/mma.1501 |
30 | Ioku N . The Cauchy problem for heat equations with exponential nonlinearity. J Differential Equations, 2011, 251 (4/5): 1172- 1194 |
31 | Zhang H W , Dong H L , Qing Y H . Existence and nonexistence of global solution for a reaction-diffusion equation with exponential nonlinearity. WSEAS Trans Math, 2013, 12 (12): 1232- 1240 |
32 |
Dai H Y , Zhang H W . Energy decay and nonexistence of solution for a reaction-diffusion equation with exponential nonlinearity. Bound Value Probl, 2014, 2014: 70
doi: 10.1186/1687-2770-2014-70 |
33 |
Ma L W , Fang Z B . Blow-up phenomena of solutions for a reaction-diffusion equation with weighted exponential nonlinearity. Comput Math Appl, 2018, 75 (8): 2735- 2745
doi: 10.1016/j.camwa.2018.01.005 |
34 |
Payne L E , Song J C . Lower bounds for blow-up in a model of chemotaxis. J Math Anal Appl, 2012, 385 (2): 672- 676
doi: 10.1016/j.jmaa.2011.06.086 |
35 |
Xu X J , Ye Z . Life span of solutions with large initial data for a class of coupled parabolic systems. Z Angew Math Phys, 2013, 64 (3): 705- 717
doi: 10.1007/s00033-012-0255-3 |
36 |
Payne L E , Philippin G A . Blow-up phenomena for a class of parabolic systems with time dependent coefficients. Appl Math, 2012, 3 (4): 325- 330
doi: 10.4236/am.2012.34049 |
37 |
Tao X Y , Fang Z B . Blow-up phenomena for a nonlinear reaction-diffusion system with time dependent coefficients. Comput Math Appl, 2017, 74 (10): 2520- 2528
doi: 10.1016/j.camwa.2017.07.037 |
38 |
Bao A G , Song X F . Bounds for the blowup time of the solution to a parabolic system with nonlocal factors in nonlinearities. Comput Math Appl, 2016, 71 (3): 723- 729
doi: 10.1016/j.camwa.2015.12.029 |
39 |
Wang N , Song X F , Lv X S . Estimates for the blowup time of a combustion model with nonlocal heat sources. J Math Anal Appl, 2016, 436 (2): 1180- 1195
doi: 10.1016/j.jmaa.2015.12.025 |
40 |
Kanel J I , Kirane M . Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth. J Differential Equations, 2000, 165 (1): 24- 41
doi: 10.1006/jdeq.2000.3769 |
41 |
肖峰. 一类大初值抛物方程组解的生命周期. 数学物理学报, 2016, 36A (4): 672- 680
doi: 10.3969/j.issn.1003-3998.2016.04.006 |
Xiao F . Life span of solutions for a class of parabolic system with large initial date. Acta Math Sci, 2016, 36A (4): 672- 680
doi: 10.3969/j.issn.1003-3998.2016.04.006 |
|
42 |
Ghoul T E , Zaag H . Blowup solutions for a reaction-diffusion system with exponential nonlinearities. J Differential Equations, 2018, 264 (12): 7523- 7579
doi: 10.1016/j.jde.2018.02.022 |
[1] | 龙群飞,陈建清. 一类带梯度依赖势和源的粘性Cahn-Hilliard方程的爆破现象[J]. 数学物理学报, 2019, 39(3): 510-517. |
[2] | 赵元章, 马相如. 一类具有变扩散系数的非局部反应-扩散方程解的爆破分析[J]. 数学物理学报, 2018, 38(4): 750-769. |
[3] | 陈盼盼, 冯三营, 薛留根. 缺失数据下半参数变系数部分线性模型的统计推断[J]. 数学物理学报, 2015, 35(2): 345-358. |
[4] | 魏传华. 因变量缺失下部分线性变系数变量含误差模型的估计[J]. 数学物理学报, 2010, 30(4): 1042-1054. |
[5] | 罗羡华, 李元, 马昀蓓, 周勇. 删失数据下的半参数变系数部分线性回归模型[J]. 数学物理学报, 2010, 30(1): 71-85. |
[6] | 唐庆国; 王金德. 系数函数光滑度互不相同的变系数模型的一步估计法[J]. 数学物理学报, 2008, 28(4): 701-710. |
[7] | 张金良;王明亮 ;王跃明. 推广的F -展开法及变系数KdV和mKdV的精确解[J]. 数学物理学报, 2006, 26(3): 353-360. |
[8] | 余长安. 双指标变系数三项非齐次递推关系的一般解[J]. 数学物理学报, 1996, 16(S1): 1-8. |
[9] | 张伟年. 参数变化下的广义指数二分性[J]. 数学物理学报, 1994, 14(S1): 72-81. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 103
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|