数学物理学报 ›› 2019, Vol. 39 ›› Issue (6): 1314-1322.

• 论文 • 上一篇    下一篇

$\mathbb{R}$2上对偶Minkowski问题的可解性

魏娜()   

  1. 中南财经政法大学统计与数学学院 武汉 430073
  • 收稿日期:2019-05-24 出版日期:2019-12-26 发布日期:2019-12-28
  • 作者简介:魏娜, E-mail: weina@zuel.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金(2722019PY053);湖北省自然科学基金(2019CFB570)

The Solvability of Dual Minkowski Problem in $\mathbb{R}$2

Na Wei()   

  1. School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073
  • Received:2019-05-24 Online:2019-12-26 Published:2019-12-28
  • Supported by:
    the Fundamental Research Funds for the Central Universities(2722019PY053);the Natural Science Foundation of Hubei Province(2019CFB570)

摘要:

该文研究Sobolev空间W1,4 ($\mathbb{S}$)中一类约束变分问题存在极小可达元.在$\int_{\rm{\mathbb{S}}} g (\theta )d\theta > 0$条件下,该极小可达元是相应Euler-Lagrange方程

的严格正解.基于此,该文在$\mathbb{R}$2上证明了文献[Huang-Lutwak-Yang-Zhang.Acta Math,2016,216(2):325-338]提出的对偶Minkowski问题的可解性.

关键词: 对偶Minkowski问题, 非线性方程, 变分方法

Abstract:

In this paper, we study the existence of minimum of a constrained variational problem in the Sobolev space W1, 4($\mathbb{S}$). If ∫$_\mathbb{S}$g(θ)dθ>0, the minimum is a positive solution to the related Euler-Lagrange equation

Based on this, we prove the solvability of the dual Minkowski problem in $\mathbb{R}$2 posed by Huang-Lutwak-Yang-Zhang[Acta Math, 2016, 216(2):325-338].

Key words: Dual Minkowski problem, Nonlinear equation, Variational method

中图分类号: 

  • O176