1 |
Cohen F . Computer viruses:Theory and experiments. Computers & Security, 1984, 6 (1): 22- 35
|
2 |
Kephart J O, White S R. Directed-Graph Epidemiological Models of Computer Viruses. 1991 IEEE Computer Society Symposium on Research in Security and Privacy. Oakland, CA: IEEE, 1991: 343
|
3 |
Ren J , Yang X , Zhu Q , et al. A novel computer virus model and its dynamics. Nonlinear Analysis Real World Applications, 2012, 13 (1): 376- 384
doi: 10.1016/j.nonrwa.2011.07.048
|
4 |
Zhu Q , Yang X , Ren J . Modeling and analysis of the spread of computer virus. Communications in Nonlinear Science & Numerical Simulation, 2012, 17 (12): 5117- 5124
|
5 |
Gan C , Yang X , Liu W , et al. A propagation model of computer virus with nonlinear vaccination probability. Communications in Nonlinear Science & Numerical Simulation, 2014, 19 (1): 92- 100
|
6 |
Gan C , Yang X . Theoretical and experimental analysis of the impacts of removable storage media and antivirus software on viral spread. Communications in Nonlinear Science & Numerical Simulation, 2015, 22 (1-3): 167- 174
|
7 |
Gan C , Yang X , Liu W , et al. An epidemic model of computer viruses with vaccination and generalized nonlinear incidence rate. Applied Mathematics & Computation, 2013, 222: 265- 274
|
8 |
Mishra B K , Pandey S K . Dynamic model of worms with vertical transmission in computer network. Applied Mathematics & Computation, 2011, 217 (21): 8438- 8446
|
9 |
Yang L X , Yang X . The spread of computer viruses under the influence of removable storage devices. Applied Mathematics & Computation, 2012, 219 (8): 3914- 3922
|
10 |
Yang L X , Yang X . A new epidemic model of computer viruses. Communications in Nonlinear Science & Numerical Simulation, 2014, 19 (6): 1935- 1944
|
11 |
Yang L X , Yang X , Wen L , Liu J . A novel computer virus propagation model and its dynamics. Int J Comput Math, 2012, 89 (17): 2307- 2314
doi: 10.1080/00207160.2012.715388
|
12 |
Yang L X , Yang X , Zhu Q , et al. A computer virus model with graded cure rates. Nonlinear Analysis Real World Applications, 2013, 14 (1): 414- 422
doi: 10.1016/j.nonrwa.2012.07.005
|
13 |
Yang L X , Yang X , Wu Y . The impact of patch forwarding on the prevalence of computer virus:A theoretical assessment approach. Applied Mathematical Modelling, 2017, 43: 110- 125
doi: 10.1016/j.apm.2016.10.028
|
14 |
Ren J, Xu Y, Zhang C. Optimal Control of a Delay-Varying Computer Virus Propagation Model. Discrete Dynamics in Nature and Society, 2013, Article ID: 210291
|
15 |
Barthélemy M , Barrat A , Pastorsatorras R , et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Physical Review Letters, 2004, 92 (17): 178701
doi: 10.1103/PhysRevLett.92.178701
|
16 |
Karsai M , Kivelä M , Pan R K , et al. Small but slow world:how network topology and burstiness slow down spreading. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2011, 83 (2): 025102
|
17 |
Zhou T , Liu J G , Bai W J , et al. Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2006, 74 (2): 056109
|
18 |
Shi H , Duan Z , Chen G . An SIS model with infective medium on complex networks. Physica A Statistical Mechanics & Its Applications, 2008, 387 (8-9): 2133- 2144
|
19 |
Liu W , Liu C , Yang Z , et al. Modeling the propagation of mobile malware on complex networks. Communications in Nonlinear Science & Numerical Simulation, 2016, 37: 249- 264
|
20 |
Wen L , Zhong J . Global asymptotic stability and a property of the SIS model on bipartite networks. Nonlinear Analysis Real World Applications, 2012, 13 (2): 967- 976
doi: 10.1016/j.nonrwa.2011.09.003
|
21 |
Wierman J C , Marchette D J . Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction. Computational Statistics & Data Analysis, 2004, 45 (1): 3- 23
|
22 |
D'Onofrio A . A note on the global behaviour of the network-based SIS epidemic model. Nonlinear Analysis Real World Applications, 2008, 9 (4): 1567- 1572
doi: 10.1016/j.nonrwa.2007.04.001
|
23 |
Castellano C , Pastorsatorras R . Thresholds for epidemic spreading in networks. Physical Review Letters, 2010, 105 (21): 218701
doi: 10.1103/PhysRevLett.105.218701
|
24 |
Chen L C , Carley K M . The impact of countermeasure propagation on the prevalence of computer viruses. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 2004, 34 (2): 823- 833
|
25 |
Draief M , Ganesh A , Massouilië L . Thresholds for Virus Spread on Networks. Annals of Applied Probability, 2008, 18 (2): 359- 378
doi: 10.1214/07-AAP470
|
26 |
Griffin C , Brooks R . A Note on the Spread of Worms in Scale-Free Networks. New York: IEEE Press, 2006
|
27 |
Moreno Y , Pastor-Satorras R , Vespignani A . Epidemic outbreaks in complex heterogeneous networks. The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 26 (4): 521- 529
|
28 |
Yang L X , Yang X , Liu J , et al. Epidemics of computer viruses:A complex-network approach. Applied Mathematics & Computation, 2013, 219 (16): 8705- 8717
|
29 |
Wang Y, Chakrabarti D, Wang C, et al. Epidemic Spreading in Real Networks: An Eigenvalue Viewpoint. International Symposium on Reliable Distributed Systems, 2003. Proceedings. New York: IEEE, 2003: 25-34
|
30 |
Mieghem P V , Omic J , Kooij R . Virus spread in networks. IEEE/ACM Transactions on Networking, 2009, 17 (1): 1- 14
doi: 10.1109/TNET.2008.925623
|
31 |
Youssef M , Scoglio C . An individual-based approach to SIR epidemics in contact networks. Journal of Theoretical Biology, 2011, 283 (1): 136- 144
doi: 10.1016/j.jtbi.2011.05.029
|
32 |
Yang L X, Moez D, Yang X. The impact of the network topology on the viral prevalence: A Node-Based Approach Plos One, 2015, 10(7): e0137849
|
33 |
Meyers L A , Newman M E , Pourbohloul B . Predicting epidemics on directed contact networks. Journal of Theoretical Biology, 2006, 240 (3): 400- 418
doi: 10.1016/j.jtbi.2005.10.004
|
34 |
Newman M E J . Analysis of weighted networks. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 70: 056131
|
35 |
Lajmanovich A , Yorke J A . A deterministic model for gonorrhea in a nonhomogeneous population. Mathematical Biosciences, 2017, 28 (3): 221- 236
|
36 |
Waltman P E , Smith H L . The Theory of the Chemostat:Dynamics of Microbial Competition. Cambridge: Cambridge University Press, 1995
|