1 |
Ćirić L B . Generalization of Banach' contraction principle. Proc Am Math Soc, 1974, 45 (2): 267- 273
|
2 |
Nadler S B . Multi-valued contraction mappings. Pacific J Math, 1969, 30: 475- 488
doi: 10.2140/pjm.1969.30.475
|
3 |
Das K M , Viswanatha Naik K . Common fixed point theorems for commuting maps on a metric space. Proc Am Math Soc, 1979, 77 (3): 369- 373
|
4 |
Jungck G . Compatible mappings and common fixed points(2). Internat J Math & Math Sci, 1998, 11 (2): 285- 288
|
5 |
Mizoguchi N , Takahashi W . Fixed point theorems for multi-mappings on complete metric spaces. J Math Anal Appl, 1989, 141: 177- 188
doi: 10.1016/0022-247X(89)90214-X
|
6 |
Amini-Harandi A . Fixed point theory for set-valued quasi-contraction maps in metric spaces. Appl Math Lett, 2011, 141: 1791- 1794
|
7 |
Assad N A , Kirk W A . Fixed point theorems for set-valued mappings of contractive type. Pacific J Math, 1972, 43: 533- 562
|
8 |
Wu J R , Liu H Y . Common fixed point theorems for sequences of Φ-type contraction set-valued mappings. Chin Quart J Math, 2009, 24 (4): 504- 510
|
9 |
Altun I , Türkoğlu . Some fixed point theorems for weakly compatible mappings satisfying an implicit relation. Taiwanese J Math, 2009, 13: 1291- 1304
doi: 10.11650/twjm/1500405509
|
10 |
Liu Z Q, Li X, Cho S Y. Fixed point theoems for mappings satisfying contractive conditions of integral type and applications. Fixed Point Theory Appl, 2011, 2011:64, 18pages, doi:10.1186/1687-1812-2011-64
|
11 |
Kaneko H , Sessa S . Fixed point theorems for compatible multi-valued and single-valued mappings. Internat J Math & Math Sci, 1989, 12 (2): 257- 262
|
12 |
Cho S H , Kim M S . Fixed point theorems for general contractive multi-valued mappings. J Appl Math & Informatics, 2009, 27 (1): 343- 350
|
13 |
Piao Y J , Jin Y F . New unique common fixed point results for four mappings with Φ-contractive type in metric spaces. Appl Math, 2012, 3: 734- 737
doi: 10.4236/am.2012.37108
|