数学物理学报 ›› 2018, Vol. 38 ›› Issue (6): 1224-1238.

• 论文 • 上一篇    下一篇

广义色散方程解的极大整体估计

牛耀明1(),丁勇2()   

  1. 1 内蒙古科技大学包头师范学院 数学科学学院 内蒙古包头 014030
    2 北京师范大学数学科学学院, 数学与复杂系统教育部重点实验室 北京 100875
  • 收稿日期:2017-03-06 出版日期:2018-12-26 发布日期:2018-12-27
  • 作者简介:牛耀明, E-mail:nymmath@126.com|丁勇, E-mail:dingy@bnu.edu.cn
  • 基金资助:
    国家自然科学基金(11471033);国家自然科学基金(11571160);国家自然科学基金(11661061);国家自然科学基金(11761054);国家自然科学基金(11561062);内蒙古自然科学基金(2015MS0108);内蒙古自治区高等学校科学研究项目(NJZZ16234);内蒙古自治区高等学校科学研究项目(NJZY17289)

Maximal Global Estimate for Solution to Generalized Dispersive Equation

Yaoming Niu1(),Yong Ding2()   

  1. 1 Faculty of Mathematics, Baotou Teachers'College of Inner Mongolia University of Science and Technology, Inner Mongolia Baotou 014030
    2 School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems(BNU), Ministry of Education, Beijing 100875
  • Received:2017-03-06 Online:2018-12-26 Published:2018-12-27
  • Supported by:
    the NSFC(11471033);the NSFC(11571160);the NSFC(11661061);the NSFC(11761054);the NSFC(11561062);the Natural Science Foundation of Inner Mongolia(2015MS0108);the Inner Mongolia University Scientific Research Projects(NJZZ16234);the Inner Mongolia University Scientific Research Projects(NJZY17289)

摘要:

考虑了如下定义的广义色散方程

其中$\phi(\sqrt{-\Delta})$是带有象征$\phi(|\xi|)$的拟微分算子.当象征$\phi$满足适当的增长条件和初值$f$属于Sobolev空间时,我们给出了由算子族$\{S_{t, \phi}\}_{0 <t <1}$生成的极大算子$S_{\phi}^*$的整体估计,其中极大算子定义为$S^{\ast}_{\phi}f(x)=\displaystyle\sup_{0 <t <1}|S_{t, \phi}f(x)|, $ $S_{t, \phi}f$是方程$(\ast)$的形式解.这些估计是对于分数次Schrödinger方程解的极大估计结果非常好的扩充,并且这些估计是利用统一的方法建立的.

关键词: 色散方程, 局部极大算子, 整体估计

Abstract:

We consider maximal estimates for solution to the generalized dispersive equation

where $\phi(\sqrt{-\Delta})$ is a pseudo-differential operator with symbol $\phi(|\xi|)$. When $\phi$ satisfies suitable growth conditions and the initial data $f$ belong to the Sobolev space $H^{s}({\Bbb R}^{n})$, we obtain the global estimate for the maximal operator $S_{\phi}^*$ generated by the operators family $\{S_{t, \phi}\}_{0 <t <1}, $ where $S_{\phi}^*$ is defined by $S^{\ast}_{\phi}f(x)=\displaystyle\sup_{0 <t <1}|S_{t, \phi}f(x)|, $ and $S_{t, \phi}f$ is a formal solution of the equation $(\ast)$. These estimates are apparently good extensions to the current results for the fractional Schrödinger equation and these estimates were obtained in a general unified way.

Key words: Dispersive equation, Local maximal operator, Global estimate

中图分类号: 

  • O175.2