1 |
Cai Y L , Kang Y , Wang W M . A stochastic SIRS epidemic model with nonlinear incidence rate. Appl Math Comput, 2017, 305: 221- 240
|
2 |
Liu Q , Jiang D Q , Shi N Z , et al. Dynamical behavior of a stochastic HBV infection model with logistic hepatocyte growth. Acta Math Sci, 2017, 37B (4): 927- 940
|
3 |
魏凤英, 林青腾. 一类具有校正隔离率随机SIQS模型的绝灭性与分布. 数学物理学报, 2017, 37A (6): 1148- 1161
|
|
Wei F Y , Lin Q T . Extinction and distribution for an SIQS epidemi model with quarantined-adjusted incidence. Acta Math Sci, 2017, 37A (6): 1148- 1161
|
4 |
Wang W M , Cai Y L , Li J L , Gui Z J . Periodic behavior in a FIV model with seasonality as well as environment fluctuations. J Franklin I, 2017, 354: 7410- 7428
doi: 10.1016/j.jfranklin.2017.08.034
|
5 |
Liu M , Mandal P S . Dynamical behavior of a one-prey two-predator model with random perturbations. Commun Nonlinear Sci, 2015, 28 (1/3): 123- 137
|
6 |
Ji C Y , Jiang D Q , Shi N Z . A note on a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation. J Math Anal Appl, 2011, 377 (1): 435- 440
doi: 10.1016/j.jmaa.2010.11.008
|
7 |
Mandal P S , Banerjee M . Stochastic persistence and stationary distribution in a Holling-Tanner type prey-predator model. Physica A, 2012, 391 (4): 1216- 1233
doi: 10.1016/j.physa.2011.10.019
|
8 |
Jiang D Q , Zuo W J , Hayat T , Alsaedi A . Stationary distribution and periodic solutions for stochastic Holling-Leslie predator-prey systems. Physica A, 2016, 460: 16- 28
doi: 10.1016/j.physa.2016.04.037
|
9 |
Ji C Y , Jiang D Q , Shi N Z . Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation. J Math Anal Appl, 2009, 359 (2): 482- 498
doi: 10.1016/j.jmaa.2009.05.039
|
10 |
Zhao D L , Yuan S L . Dynamics of the stochastic Leslie-Gower predator-prey system with randomized intrinsic growth rate. Physica A, 2016, 461: 419- 428
doi: 10.1016/j.physa.2016.06.010
|
11 |
Xu Y , Liu M , Yang Y . Analysis of a stochastic two-predators one-prey system with modified Leslie-Gower and Holling-type Ⅱ schemes. J Appl Anal Comput, 2017, 7 (2): 713- 727
|
12 |
Liu M , Wang K . Dynamics of a two-prey one-predator system in random environments. J Nonlinear Sci, 2013, 23 (5): 751- 775
doi: 10.1007/s00332-013-9167-4
|
13 |
Qiu H , Liu M , Wang K , Wang Y . Dynamics of a stochastic predator-prey system with BeddingtonDeAngelis functional response. Appl Math Comput, 2012, 219 (4): 2303- 2312
|
14 |
Liu M , Wang K . Persistence, extinction and global asymptotical stability of a non-autonomous predatorprey model with random perturbation. Appl Math Model, 2012, 36 (11): 5344- 5353
doi: 10.1016/j.apm.2011.12.057
|
15 |
王克. 随机生物数学模型. 北京: 科学出版社, 2010
|
|
Wang K . Random Biological Mathematical Model. Beijing: Science Press, 2010
|
16 |
Khasminskii R . Stochastic Stability of Differential Equations. Alphen aan den Rijn: Sijthoff & Noordhoff, 1980
|
17 |
Mao X R , Marion G , Renshaw E . Environmental Brownian noise suppresses explosions in population dynamics. Stoch Proc Appl, 2002, 97 (1): 95- 110
doi: 10.1016/S0304-4149(01)00126-0
|
18 |
Kloeden P , Platen E . Numerical Solution of Stochastic Differential Equations. Berlin: Springer, 1999
|