1 |
Dinkelbach W . On nonlinear fractional programming. Manag Sci, 1967, 13: 492- 498
doi: 10.1287/mnsc.13.7.492
|
2 |
Yang X M , Teo K L , Yang X Q . Symmetric duality for a class of nonlinear fractional programming problems. Math Anal Appl, 2002, 271: 7- 15
doi: 10.1016/S0022-247X(02)00042-2
|
3 |
Yang X M , Yang X Q , Teo K L . Duality and saddle-point type optimality for generalized nonlinear fractional programming. Math Anal Appl, 2004, 289: 100- 109
doi: 10.1016/j.jmaa.2003.08.029
|
4 |
Lin J Y , Shu R L . Modified Dinkelbach-type algorithm for generalized fractional programs with infinitely many ratios. J Optim Theory Appl, 2015, 126: 323- 343
|
5 |
Boţ R I , Hodrea I B , Wanka G . Farkas-type results for fractional programming problems. Nonlinear Anal, 2007, 67: 1690- 1703
doi: 10.1016/j.na.2006.07.041
|
6 |
孙祥凯.约束优化问题的若干对偶以及微分性研究[D].重庆:重庆大学, 2012
|
|
Sun X K. Some Duality and Differentiability for Constrained Optimization Problems[D]. Chongqing:Chongqing Univ, 2012
|
7 |
Sun X K , Chai Y . Optimality conditions for DC fractional programming problems. Advan Math, 2014, 43: 895- 904
|
8 |
Combari C , Laghdir M , Thibault L . A note on subdifferentials of convex composite functionals. Arch Math, 1996, 67: 239- 252
doi: 10.1007/BF01195240
|
9 |
Boţ R I , Grad S M , Wanka G . New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces. Nonlinear Anal, 2008, 69: 323- 336
doi: 10.1016/j.na.2007.05.021
|
10 |
Boţ R I , Grad S M , Wanka G . A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces. Math Nachr, 2008, 281: 1088- 1107
doi: 10.1002/(ISSN)1522-2616
|
11 |
Boţ R I , Grad S M , Wanka G . Generalized Moreau-Rockafellar results for composed convex functions. Optim, 2009, 58: 917- 933
doi: 10.1080/02331930902945082
|
12 |
方东辉, 王梦丹. 锥复合优化问题的Lagrange对偶. 系统科学与数学, 2017, 37: 203- 211
|
|
Fang D H , Wang M D . Study on the Lagrange dualities for composite optimization problems with conical constraints. J Sys Sci Math Scis, 2017, 37: 203- 211
|
13 |
Li G , Zhou Y Y . The stable Farkas lemma for composite convex functions in infinite dimensional spaces. Acta Math Appl Sin, 2015, 31: 677- 692
doi: 10.1007/s10255-015-0493-1
|
14 |
Fang D H , Gong X . Extended Farkas lemma and strong duality for composite optimization problems with DC functions. Optim, 2017, 66: 179- 196
doi: 10.1080/02331934.2016.1266628
|
15 |
Zǎlinescu C. Convex Analysis in General Vector Spaces. New Jersey:World Scientific, 2002
|
16 |
Fang D H , Lee G M , Li C , Yao J C . Extended Farkas's lemmas and strong Lagrange dualities for DC infinite programming. J Nonlinear Convex Anal, 2013, 14: 747- 767
|
17 |
Fang D H , Li C , Ng K F . Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming. SIAM J Optim, 2009, 20: 1311- 1332
|